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Abstract— We have build a device named RepaiR for strength
measurements and isokinetic rehabilitation of the wrist joint.
We have performed series of measurements on 25 healthy
individuals and 10 patients with neuromuscular and trau-
matic impairments. Our initial goal was to verify that the
measured data contain sufficient information to distinguish
between healthy and not healthy subjects as a proof of concept.
We have implemented Recurrent Neural Network (RNN) with
Long Short-Term Memory (LSTM) that processes the time
structured measurements. LSTM effectively models the varying
length of the input vector and the long term dependencies.
We compare performances of our models on the data sets
with varying minimal input vector lengths. We have proven
that the measurements can be used to detect neuromuscular
impairments and our best performing model worked with 77,6
% accuracy.

I. INTRODUCTION

People suffering from movement disorders usually un-
dergo some form of physical rehabilitation to improve motor
functions of the impaired limbs. The individuals whose
upper extremities are affected are particularly limited in the
activities of daily life. The outcome of the physical reha-
bilitation process depends on the patientś health condition,
his/her motivation, duration, intensity and selection of the
rehabilitation activities, [1]. Repeating exercises many times
is necessary to achieve improvement but this also leads to
boredom, disengagement, exhaustion, frustration both on the
side of the patient and the therapist especially if the rate of
recovery is very slow, [2].

Physical rehabilitation can be aided and supervised by
robotic devices. Robots reduce the strain on the therapist
who can then tend to more patients. Patients’ condition and
progress can be measured more precisely and, in more detail,
using the sensors of a robot than with the conventional
methods, [3]. Physiological exercise data is collected by
sensors attached both to the human and to the robot. The
collected data are processed to extract information related
to the diagnosis of the exercising subject and can be used

as an input to a decision support system that advises on
the ways the physical rehabilitation process is conducted.
Precise diagnosis and quantification of the extent of the
patient’s impairment enable to suggest the optimal structure
of the exercises to accelerate the recovery. The patient’s
condition changes over time and the challenge is to evaluate
the patient’s state often and unobtrusively.

We have developed a tensometric device RepaiR shown
in Fig. 1 that we use for measurements and isokinetic
rehabilitation of the wrist. RepaiR measures forces in flexion,
extension, ulnar and radial deviation of the wrist. Resistance
exercises proved to be effective for rehabilitation of both, the
lower and the upper extremities, [4], [5].

Fig. 1. Repair device for wrist diagnostics

Today, the standard procedures for measuring the wrist
strength are performed with objects of known weight and
special exercises that enable the patient’s performance to
be ranked, [6]. The disadvantages of this approach are low
repeatably, loss of much of the available data and subjectivity



on the side of the supervising person. RepaiR’s sampling
frequency is in the range of 100ms and the data is evaluated
by a machine learned model.

We have performed series of strength measurements on
25 healthy and 10 wrist impaired individuals. Each measure-
ment was divided into small portions representing isokinetic
strength of a basic movement and labeled with the verified
diagnosis. We have used the labeled data to train and to
test the machine learned models. The absolute values of the
patient’s measured forces provide only a limited insight into
his/her condition. The time structure of the data is more
important. We have used the LSTM models to classify the
motion patterns and proved that RepaiR device records useful
data to be used for detection and quantification of wrist
related disorders.

II. RELATED WORK

A. Rehabilitation robotics

The attempts to use robots in physical rehabilitation have
a long history. Robots conserve human resources on the side
of the care personnel. Robots do not get bored, frustrated
and may work with higher accuracy than humans. MIT-
MANUS was a pioneering rehabilitation robot for upper
limbs introduced in 1992, [7]. Robot assisted therapy has
become widely accepted by clinicians and researchers in the
following decades. Various studies have proved that robot
assisted physical rehabilitation therapy is effective although
usually not more than a conventional therapy, [3] [8] [9].

NU-Wrist was a novel exoskeleton robot for wrist and
forearm rehabilitation, [10]. Its authors had the same reasons
for its development as we did with the RepaiR system.
Currently, most of the rehabilitation robotic systems are very
expensive and available only in specialized rehabilitation
centers in limited quantities. NU-Wrist was designed as
an table mounted exoskeleton containing three joints cor-
responding to the three DOF of the wrist:

1) Flexion and extension.
2) Ulnar and radial deviation.
3) Pronation and supination.

The prototype design was done in 3D CAD software al-
lowing direct prototyping with 3-D printing technology. The
robot was driven by electric motors that are widely available
in various sizes and torque capabilities thus suiting most
of the robotic applications including the robot-assisted wrist
rehabilitation. The robot’s range of motion was set on healthy
subjects in isolated movements when angular deviations of
the actuators were measured while the subject exercised
within the maximum ranges of his/her motions, [10].

Besides the wrist motion ranges also wrist strength may be
impaired e.g. by epicondylitis, soft tissue damage or fractures
of the distal forearm or carpus. Yoshii et al. developed a
similar device to our RepaiR for the measurement of flexural
and extension torques in different forearm positions, [11].
They examine the differences between the wrist bend and
elongation torque in various forearm postures in healthy
subjects. The wrist torque measuring device consisted a force

sensor handle stick similar to the one used in RepaiR and a
table top rig for positioning of the forearm. The handle stick
inclination could also be adjusted. The arm of the subject
was attached to the table, unlike in RepaiR where the arm
is placed in a splint. The subjects were asked to develop
maximum isometric contraction for flexion or wrist extension
and hold it for 5 seconds.

The patients with the neural system affected form a
separate category. Miller et al., [12], studied chronic hemi-
paretic stroke patients using a wrist and finger force sensor
module. Their device was designed to measure isometric
flexion/extension forces using strain gauges on fingers, wrist,
and thumb during robot-mediated 3-D dynamic movements
of the upper limb. They have collected data from eight
subjects with chronic hemiparetic stroke. The range of wrist
and fingers force measurement was from 0 to app. 450 N
what is enough to measure the maximum effort in paresis,
non-paresis and healthy control subjects without the loss
of resolution. This range was adapted for hand flexion and
extension.

B. Machine learning for medical data

Hammerla et al. have used deep learning to assess the state
of Parkinson disease, [13]. They collected input data by tri-
axial accelerometer that measures acceleration along three
perpendicular axes with high temporal resolution (100 Hz).
They used generative model based on Restricted Bolztman
machines with fine-tuned softmax layer for detection of
four classes: asleep, off, on and dyskinetic. Their model
outperformed other approaches, despite unreliable labeling
of the input data.

Stanlescu et al., [14], developed Hierarchical Linear Dy-
namical System for detection of sepsis in neonates. The
authors monitored the cardiovascular system (heart-rate),
thermoregulatory system (body temperature) and respiration
system (saturation of oxygen) at 1 Hz sampling frequency
and classified the data into three regimes: stability, known
factors and unknown factors. The study did not find the
Hierarchical Linear Dynamical System to perform better than
Auto-regressive Hidden Markov Model.

Recurrent neural networks (RNN) have been successfully
used on medical data. Lipton et al. [15] developed RNN
with LSTM to classify 128 diagnoses using 13 clinical
measurements. Multivariate input series contained: diastolic
and systolic blood pressure, peripheral capillary refill rate,
end-tidal CO2, fraction of inspired O2, Glascow coma scale,
blood glucose, heart rate, pH, respiratory rate, blood oxygen
saturation, body temperature, and urine output. Their best
performing model was using two layers of LSTM, dropout
layer with probability 0.5, fully connected layer and cross-
entropy layer for multiclass classification. The model out-
performed MLP with hand engineered features. This study
gives strong evidence, that LSTM works well with different
types of medical data.



III. THE METHODS USED

A. Long Short-Term Memory

A recurrent neural network is a class of artificial neural
network used for classification and regression of sequential
information. Information persists in the network through
recurrent connections that pass information from previous
time step to the current one. The most commonly used type
of RNN is Long Short-Term Memory (LSTM), that was
introduced by Hochreiter and Schimdhuber in 1997, [16].
We decided to use RNN with vanilla LSTM. A large-scale
study concludes that it performs reasonably well on various
datasets, [17].

LSTM is designed to store long-term dependencies in
time series data. Long term dependencies are stored in cell
states. The cell state Ct (fig. 2) passes through LSTM with
simple linear modifications. LSTM is capable of modifying
cell state.These modifications are performed by gates, non-
linear functions, that control the amount of information that
is passed further or forgotten. While ht represents current
output of LSTM, C0 and h0 represent the initial state of
LSTM. Information in Ct and ht is computed in every time-
step t of the input time series.

Fig. 2. Flow of memory and output in Long Short-Term Memory

LSTM unit takes three inputs xt, ht−1, Ct−1 and computes
two outputs Ct, ht. The inputs are processed through gates.
Cell state Ct is modified by two operations; element-wise
multiplication and summation. Element-wise multiplication
is performed by forget gate ft (Eq. 1). Here ft is a sigmoid
function, that controls which information should be forgot-
ten.

ft = σ(Wf .[ht−1, xt] + bf ) (1)

Inputs xt and ht−1 are also used by the input gate it and
vector of proposed cell state values C∗

t . The input gate
it (Eq. 2) is again represented by a sigmoid function that
controls the amount of information that will influence the
new cell state Ct. The input gate uses multiplication to filter
the proposed cell state C∗

t (Eq. 3), which is computed as
hyperbolic tangent function of the new information in time
step t.

it = σ(Wi.[ht−1, xt] + bi) (2)

C∗
t = tanh (Wc.[ht−1, xt] + bc) (3)

New cell state Ct (Eq. 4) is then calculated as a sum of old
cell state Ct − 1 filtered by forgot gate ft and proposed cell
state C∗

t filtered by input gate it.

Ct = ft · Ct−1 + it · C∗
t (4)

New output ht (Eq. 6) is computed as cell state Ct filtered
by the output gate ot (Eq. 5). The output gate ot (Eq. 5)
represents how much should the input xt the previous output
ht−1 and the current cell state influence the current output
of the LSTM unit.

ot = σ(Wo.[ht−1], xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

Fig. 3. Long Short-Term Memory structure

We have used a RNN architecture that contained an input
layer, an LSTM layer a fully connected layer and a softmax
layer. Softmax was used for multiclass classification and the
loss was computed by a cross-entropy cost function.

B. Experimental Setup

The goal of our experiments was to verify that the RepaiR
device can collect data that enable detection of wrist related
problems. We have examined 25 healthy individuals and
10 individuals with neuromuscular impairments. Participants
varied in age (20 - 68), sex (13 females, 22 males). We
have labeled the data based on the patient’s diagnose that
was determined by medical experts prior to the experiments.
Experiments were performed under supervision of physicians
at The Department of physiotherapy, balneotherapy and
clinical rehabilitation in Louis Pasteur University Hospital.
All of the experiments were performed with formal approval
of the human subjects.

We have asked the subjects to consecutively perform
flexion, extension, radial deviation and ulnar deviation and to
hold exert the force for 2 seconds at their maximum. We did
not provide the subject any feedback on their performance.
This allowed us not only to measure the basic movements’
maximal forces but also to observe the changes in the forces
through time, Fig. 4.



Fig. 4. Exercising on Repair device.

The raw input data are measured by eight strain gauges in
the RepaiR device. The sensors are located inside the handle
stick, 4 in the top and 4 in the bottom placed on the sides of 2
squares, forming two parallel cartesian planes. The sampling
frequency was 10 Hz. The raw input data is thus a time series
of 8 dimensional vectors.

We have divided the data into subsets based on the type of
the attempted movement (flexion, extension etc.). We have
implemented a rule-based system to classify the input data
this way based on the responses of the individual strain
gauges. The subsets served as inputs to the machine learned
models (Eq. 7).

Fig. 5. Input vector of raw data used for classification

Each of the sequential input maps represented a single
attempt of a subject to exert maximal force in a specific
movement, Fig. 5. We have evaluated the performance of two
LSTM models. Both models were designed as dichotomous
classifiers (healthy or impaired) detecting neuromuscular
impairments. We have varied the minimal size Tmin of the
input sequence to find the optimal setup and to answer
the question if increasing the length of the input sequence

improves the accuracy of the trained model.

xi =
{
f1, f2 ... f8

}
Xinput =

{
x1 ... xt

}
where t is number of measurements

t > Tmin

(7)

IV. EXPERIMENTAL RESULTS

We have produced 5 different datasets from the raw data
increasing the minimal value of Tmin from 1 to 5. The size of
the datasets varied from 1024 observations at Tmin=1 to 280
observations at Tmin=5. We have used 60 % of the data for
training and 40 % for validation. Each class was represented
by equal proportion of samples - 50%.

The RNN models were trained using stochastic gradient
descent with fixed learning rate α=0.1 for 250 epochs.
Each training procedure was repeated 10 times and the
results obtained are reported in Tab. I. The values displayed
represent averaged performances over the 10 repetitions. The
top of Tab. I shows the performance of the RNN with a
single LSTM layer with 50 units and the bottom of the RNN
with 100 LSTM units and a dropout layer with 0.5 dropout
probability.

The individual trained models performed with 0.7 ± 0.1
accuracy. The accuracy does not vary significantly neither
between the two models nor across the different training sets.
slightly improving with the increasing length of the input
sequence. The most accurate model trained on the dataset
with Tmin = 4 has the average accuracy of 0.7671.

It is also important to evaluate the sensitivity and the speci-
ficity. The first model has sensitivity of 0.55 or lower. The
second model performs similarly on the first three datasets.
However, there is a substantial increase in sensitivity to
0.7181 (Tmin = 4) and 0.6275 (Tmin = 5) on the two latter
datasets. The specificity of the models remains high on the
datasets; i.e. 0.8. The results show that the first model without
the dropout layer has the tendency to classify majority of
the input patterns in the negative class what leads to high
specificity, but low sensitivity.

V. DISCUSSION

We have performed a study that aim was to verify the
diagnostic capability of the RepaiR device. We have devel-
oped a computer game to test the rehabilitation potential of
the RepaiR device but that is a work in progress. We have
performed the experiments in the Louis Pasteur University
Hospital in Kosice, Slovakia. We acknowledge here their
kind support. We have found several design issues during
the tests. The subject needs to grasp the handle. This is
problematic when the subject suffers on partial paralysis
of the hand. Sometimes the subject’s physical proportions
do not match the splint or the handle although the RepaiR
device is partially adjustable. The handle should be free
rotating to avoid twisting the handle that affects the input data
negatively. We have observed that if the subject is provided
with the visual feedback he/she exerts higher forces. Over-
motivated subjects tend also to twist the handle at higher



Average classification performance
LSTM - 1 layer - 50 units

Tmin=1
(n = 1024)

Tmin=2
(n = 726)

Tmin=3
(n = 524)

Tmin=4
(n = 380)

Tmin=5
(n = 280)

Accuracy 0.7090 0.6897 0.6876 0.7020 0.7107
Sensitivity 0.5043 0.4248 0.4170 0.5170 0.5495
Specificity 0.9188 0.9470 0.9535 0.8899 0.8690
PosPredVal 0.8642 0.8861 0.8981 0.8267 0.8047
NegPredVal 0.6440 0.6289 0.6246 0.6446 0.6626
PosLikHood 6.2121 8.0108 8.9695 4.6963 4.1959
NegLikHood 0.5394 0.6074 0.6114 0.5428 0.5183

LSTM - 1 layer - 100 units with dropout (P=0.5)
Accuracy 0.7044 0.7138 0.6957 0.7671 0.7357
Sensitivity 0.5611 0.4598 0.4908 0.7181 0.6275
Specificity 0.8488 0.8843 0.8959 0.8151 0.8413
PosPredVal 0.7890 0.7948 0.8217 0.7918 0.7941
NegPredVal 0.6574 0.6269 0.6429 0.7470 0.6984
PosLikHood 3.7111 3.9734 4.7162 3.8837 3.9532
NegLikHood 0.5170 0.4934 0.5683 0.3459 0.4428

TABLE I
AVERAGE CLASSIFICATION PERFORMANCES OF TWO RNN WITH LSTM ON THE DATASETS WITH VARYING INPUT LENGTHS.

forces what is the most prominent in flexion. The subject
tends to move the forearm towards the handle to increase the
force. One of the solutions is to use an auto adjustable splint.
The ergonomy of the device should also be improved. It is
placed on the top of a table and the handle was difficult to
reach for wheelchair patients. The device should be mounted
on a dedicated height adjustable mount.

The strain gauges measure opposite forces and work in
couples placed opposite to each other. The strain gauges
are flexible and produce counter forces when deformed
that affect the measurement. The measured time series are
generally useful only when the measured force increases.
The time series with the measured forces decreasing usually
correspond to the return to zero values due to the physical
characteristics of the device rather than due to the subject’s
input.

There are several practical issues that might affect model’s
performance, accuracy and sensitivity. The data used for ex-
periments contained the measurements of healthy individuals
and patients with impairments caused by various injuries and
diseases such as forearm trauma, stroke or multiple sclerosis.
In most cases we only had one or two patients within each
group and we have measured maximal strengths of both
wrists in four motions. However, not all of these conditions
influence the strength. These measurements might pollute the
data by providing contradicting samples.

In terms of variability of the conditions a significant
proportion of the data was measured on stroke patients.
This lack of diversity in training samples might lead to bias
towards features specific for stroke patients and influence
the model’s accuracy for patients with different conditions.
Another factor that is likely to affect the model robustness
is the relatively small number of the study participants (35).

The optimization method we have used was the stochastic
gradient descent that is trained in mini-batches. This training
combined with the fixed learning rate causes fluctuations in
the training progress (Fig. 6) that affect the performance
of the classifier. Using dynamic learning rate caused over

fitting on the subjects with the low wrist strength. This can
be solved by using a more heterogeneous dataset.

Fig. 6. LSTM training progress - 250 epochs

VI. CONCLUSION

We have built the RepaiR device to measure forces exerted
by the wrist attempted movements and to aid in the physical
rehabilitation process. Our goal is to make the rehabilitation
process adaptive. For that the subject’s condition has to be
evaluated often. We have presented here the initial research
of the capability of the RepaiR device to detect wrist related
problems. We have collected experimental data from healthy
individuals and patients with various neuromuscular impair-
ments. We have implemented a recurrent neural network with
LSTM layer that was able to distinguish between the healthy
and the affected subjects. The best performing model had
77.6 % accuracy with 71.8 % sensitivity.

The results obtained show, that recurrent neural network
with LSTM is able to classify continuous data from RepaiR.



The RepaiR collected data contain more information that can
be used to focus and specify the rehabilitation process.

Several suggestions arise from the results of this study
some of them related to improving the ergonomy of the
device. More experimental data need to be collected to
distinguish between different diagnoses and the extent of the
problem. So far, we have found that certain fluctuations in
the measured force indicate that the neural system is affected.
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