CLOUD-CONNECTED SOCIAL ROBOTS FOR HEALTHY AGING

Gergely 'Geri' MAGYAR, PhD.

What does the word robot mean?

Where was it born?

How we imagine (assistive/social) robots?

We humans are the 'ultimate' social species

Social brain

$\bullet \quad \bullet$

What kind of robots people like?

How can social robots help the elderly?

A robot as a coach for cognitive stimulation therapy

PROBLEMS WE HAD TO FACE

- How to control the robot?
- Teleoperators are lazy...
- How to learn?
- How to use cloud computing?

THE OVERALL ARCHITECTURE

THE WIZARD OF OZ METHOD

"... is a research experiment in which subjects interact with a (computer) system that subjects believe to be autonomous, but which is actually being operated or partially operated by an unseen (hidden) human being."

- Hannington & Bella, 2012

THE WIZARD OF OZ METHOD (2)

- Riek, 2012

PROBLEMS OF WOZ INTERFACES

- Different control interface for each scenario
- Incompatible with different types of robots
- Mostly desktop versions
- Installation problems
- Used locally

THE SOLUTION

- ClOud-based Wizard Of OZ (CoWOOZ)
- Same interface for every scenario
- Currently supports: Nao, Pepper, Milo, Q.bo
- Web-based UI
- No installation needed
- <u>Website</u>

COWOOZ WEB INTERFACE

REINFORCEMENT LEARNING

- determines how to map situations to actions
- states, actions, reward function
- Q-table

INTERACTIVE REINFORCEMENT LEARNING

- interactive reinforcement learning
- extension of the classic reinforcement learning technique
- the reward is given by a human, this is called **socially guided machine learning** (A. Thomaz, 2006)

CLOUD-BASED REINFORCEMENT LEARNING

- Publicly available algorithms without the need of installation
- Scalability
- Combine unique models into a general one
- Building a knowledge base by multiple users
- Sharing the knowledge between multiple robots
- Creating personalized robot behavior
- Accessible from the web or locally

COGNITIVE EXERCISES WITH ELDERLY

H1: Our modified interactive reinforcement learning algorithm is able to increase the robot's level of autonomy in a real-world social human-robot interaction scenario.

H2: The elderly will be able to accept and build a positive relationship with the robot even only after two interactions with it.

COGNITIVE EXERCISES WITH ELDERLY (2)

- The participants played two games called "Guess the fruit" and "Guess the animal"
- e.g. Please name a fruit which name starts with A
- The game lasted until the subject gave correct answers for all letters
- •10 subjects (2M/8F, average age 78.5, 68 to 94)

COGNITIVE EXERCISES WITH ELDERLY (3)

- 4 states: correct answer, incorrect answer, doesn't know, other
- 6 types of actions: easy question, question of medium difficulty, hard question, help, applause, sorrow
- the reward was defined by the teleoperator

COGNITIVE EXERCISES WITH ELDERLY (4)

- 1. Meeting (group) the participants were introduced to the goal of the experiments
- 2. Meeting (individual) the subjects played the cognitive game "Guess the fruit"
- 3. Meeting (individual) the subjects played the cognitive game "Guess the animal"
- 4. Meeting (individual) the participants filled out a questionnaire about their experience from the sessions

COGNITIVE EXERCISES WITH ELDERLY (5)

COGNITIVE EXERCISES WITH ELDERLY (6)

COGNITIVE EXERCISES WITH ELDERLY (7)

Intro	End			Last state:	Other
Letter A (easy)	Letter B (easy)	Help A	Help B	New state:	Correct answer
Letter C (easy)	Letter D (easy)	Help C	Help D	Reward:	
Letter E (hard)	Letter F (hard)	Help E	Help F	Learn	
Letter H (easy)	Letter J (easy)	Help H	Help J	Suggested action:	Applause
Letter K (medium	Letter M (easy)	Help K	Help M	Approve	
Letter N (medium	Letter P (easy)	Help N	Help P	Correct answer	Doesn't know
Letter R (medium	Letter S (medium	Help R	Help S	Incorrect answer	Other
Letter V (hard)		Help V			
Applause 1	Applause 2	Sorrow 1	Sorrow 2		
Applause 3	Applause 4	Sorrow 3	Sorrow 4		
Applause 5	Applause 6	Sorrow 5	Sorrow 6		
			Say		

COGNITIVE EXERCISES WITH ELDERLY (8)

s_t = last state, a = action, r = reward				
WHILE NOT end of interaction:				
s_t = state of the subject labeled by the Wizard				
$a = \varepsilon$ -greedy action selection				
IF Wizard accepts a THEN:				
execute <i>a</i> , label the new state (s_{t+1}) of the subject by the Wizard				
ELSE:				
a = action chosen by the Wizard				
execute <i>a</i> , label the new state (s_{t+1}) of the subject by the Wizard				
r = reward given by the Wizard				
update Q-value				
$S_t = S_{t+1}$				
ENDWHILE				

COGNITIVE EXERCISES WITH ELDERLY (9)

COGNITIVE EXERCISES WITH ELDERLY (10)

COGNITIVE EXERCISES WITH ELDERLY (11)

- Questionnaire based on the Almere model
- 21 questions
- Filled out by 12 subjects (3M/9F, average age 78.5, 56 to 94)

IF YOU ARE INTERESTED IN ...

- •Using cloud computing in social robotics
- Application of artificial intelligence in social robotics
- Application of robotics in elderly care

THANK YOU FOR YOUR ATTENTION!

Project is supported

By Slovak Agency for Science and Technology project number 015-0731 (2016-2020)

