
1.  Introduction to Cloud Social Robotics  

 
Considering the developments in robotics, the defini-

tion of the notion “robot” can change over time. Infor-

mation technologies (hereinafter IT), more particularly 

cloud computing, had a great impact on social robotics. 

Socially assistive robotics (hereinafter SAR) has many as-

pects, but the major one is human-robot interaction (here-

inafter HRI), where the ‘H’ stands for user studies that 

means the human perspective; the ‘R’ represents the tech-

nological and other characteristics of the robot. Gaining 

insights into the ‘I’ (the nature of interaction between hu-

mans and robots) is possible only by investigating both ‘H’ 

and ‘R’. Considering this, we can formulate the key chal-

lenge of HRI as follows [1]: “HRI is the science of study-

ing people’s behavior and attitudes towards robots in re-

lationship to the physical, technological and interactive 

features of the robots, with the goal to develop robots that 

facilitate the emergence of human-robot interaction that 

are at the same time efficient (according to the original 

requirements of their envisaged area of use), but are also 

acceptable to people, and meet the social and emotional 

needs of their individual users as well as respecting human 

values”. 

HRI is a relatively young discipline evoked by the in-

crease in the availability of robots and people’s exposure 

to them. Human-robot interaction has become a part of 

everyday life through robotic toys and household appli-

ances (robot vacuum cleaners or lawn movers). Robots 

found their applications in real-world application areas, 

such as rehabilitation, eldercare, or robot assisted therapy. 

Socially assistive robotics has three major multidisci-

plinary parts as it can be seen in Figure 1. This paper fo-

cuses on the IT and artificial intelligence (hereinafter AI) 

part of this problem. It is believed that the significant pro-

gress in IT and AI could be used in HRI to generate new 

approaches for the assistive domain of social robotics. 

The major challenge related to creating new business 

models in social robotics is connected to the question what 

a robot is. In the concept of ‘Reality 2.0’ from Japan and 

‘Industry 4.0’ used mainly in Europe we can consider the 

possibility of connecting cyber and physical systems in 

social robots. 

 

 

Fig. 1 Multidisciplinarity of HRI 

 

Understanding these approaches, we can reformulate 

the definition of a robot and accept the fact that a connec-

tion between a virtual and a real robot can be really fast. 

This assumption is supported by the technological pro-

gress in Wi-Fi networks towards 5G and cloud computing. 

Based on this, the notion ‘robot’ can have the following 

meanings: 

a) Classical understanding of a robot 

b) Virtual robot (hereinafter VR) on the cloud (or 

server) which is constantly connected to one or 

many real robots (hereinafter RR). This means 

that VRs with different parameters can control 

many RRs, which can lead to personalization in 

HRI. 

c) Omni-present (ubiquitous robot concept) ap-

proach when a VR or a RR can be connected to 

an intelligent space including external cameras, 

social networks, or knowledge bases. Data fu-

sion and knowledge discovery from big data are 

the key elements of this approach. 

Based on the considerations above we can change the con-

cept of HRI in assistive robotics to HRE-I (Human-robot-

environment interaction), where the environment is the 

source of big data which helps to personalize the robot’s 

services. In Figure 2 one can see the basic concept of a 

new way of interaction in SAR. The key element is the 

soft agent which is considered as a VR connected to a RR 

(in this case a Pepper). The main challenge in such an ar-

chitecture is to make the VR semi- or fully-autonomous. 
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Fig. 2 Basic concept of HRE-I for socially assistive robotics 

 

2. From Wizard of Oz to Autonomous VR 

 Machine (or robot) autonomy is a complex issue and an 

even complicated notion. In our case we assume that the 

VR is teleoperated by a human. This approach in the HRI 

community is called the Wizard of Oz method. The basic 

approach for measuring the autonomy of a robot is to con-

sider task-based autonomy. If we consider that a task is 

carried out by a human in collaboration with a machine, 

we can state that: 

 

    𝐺𝐼𝑄𝑇𝐴𝑆𝐾 = 𝐻𝐼𝑄𝑇𝐴𝑆𝐾 + 𝑀𝐼𝑄𝑇𝐴𝑆𝐾      (1) 

 

where GIQTASK is a task-dependent global intelligence 

quotient, always set to 1; HIQTASK is a task-dependent hu-

man intelligent quotient, from the interval <0, 1>; MI-

QTASK is a task-dependent machine intelligence quotient, 

from the interval <0, 1>, 

According to the above-mentioned, when HIQTASK is 1 

and MIQTASK is 0, the VR is entirely controlled by the hu-

man teleoperator. When MIQTASK is 1 and HIQTASK is 0 

then the VR is fully autonomous and the human teleoper-

ator is just supervising the VR. 

The main scientific challenge is how to create an auton-

omous VR personalized to the human’s needs. Albeit 

there are several approaches to do so, we have been inves-

tigating various methods of reinforcement learning for 

learning from teleoperation in the cloud environment.  

One of the most popular reinforcement learning (here-

inafter RL) algorithms is Q-learning developed by Wat-

kins in 1989 [2]. This method is an off-policy TD (tem-

poral difference) control algorithm which calculates the 

quality of a state-action combination (Q: S x A → R). It is 

based on the theory of Markov Decision Processes (MDP),  

 

 

 

 

 

which states that any state st+1 occupied by an agent is 

a function only of its last state and action: st+1 = f(st, at),  

where st ∈ S and at ∈ A are the state and action at time step 

t [3]. The model of the problem includes an agent, states 

(s) and actions (a) which are connected to states. By per-

forming an action, the agent changes its state which pro-

vides it with a reward (r). The goal of the agent is to max-

imize the total reward by learning which actions to per-

form in each state. In general, the action which is optimal 

for the given state has the highest long-term reward. The 

reward is the weighted sum of the expected values of re-

wards of future steps starting from the current state. Be-

fore learning, the first value of Q is given by the developer 

(usually 0), later on the values are stored in a table. The 

Q-values are calculated by the following formula [4]: 

 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) =  𝑄𝑡(𝑠𝑡 , 𝑎𝑡) +  𝛼(𝑠𝑡 , 𝑎𝑡)[𝑟𝑡+1

+ 𝛾𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)] 

                                           (2) 

 

where rt+1 is the reward after performing action at in 

state st. α(st, at), (0 < α ≤ 1) is the learning rate which de-

termines whether a new information will override the ex-

isting one. The learning rate can be different for various 

states. Γ is the discount factor which determines the im-

portance of future rewards [4].  

We have tried different types of RL and ported them to 

a cloud computing environment using the Microsoft Az-

ure platform. This kind of implementation has the follow-

ing advantages: 

- Software as a Service (SaaS) – is a capability pro-

vided to the user to use an application which is run-

ning on a cloud infrastructure. By infrastructure we 

mean a collection of software and hardware which 

enables the five characteristics of the cloud model 



(on-demand self-service, broad network access, re-

source pooling, rapid elasticity, measured service). 

The application is available from a various range 

of devices through a thin client or a program inter-

face. The developer doesn’t manage or control the 

cloud infrastructure, such as network, servers, op-

erating system, etc. 

- Scalability – is the application’s ability to continue 

to function without any errors when it is change in 

size to meet the users’ need. In some cases it is 

done automatically, but there is an option to define 

the rules controlling this procedure manually by 

the developers of the application. From the user’s 

point of view these capabilities can be seen as un-

limited and be appropriated at any time. 

- Accessibility – the results of the learning process 

(in our case the trained Q-tables) are always avail-

able and can be used in similar scenarios with the 

given subject. 

- Personalization – the trained Q-tables for each in-

dividual can be used to search for patterns, which 

can serve as a basis for creating a personalized ro-

botic behavior.  

- Speedup in the learning process – since the cloud 

infrastructure optimizes the deployed algorithms 

the learning process can be sped up significantly. 

We think that the above-mentioned characteristics can 

bring a new dimension to the use of reinforcement learn-

ing in or out of social human-robot interaction. 

 

3.  Cognitive Stimulation Therapy with Elderly 

 To prove the usability of our approach for learning social 

action selection from the Wizard in a real-world social 

HRI scenario we used a robot as a coach for cognitive 

stimulation therapy in an elderly care facility. In a similar 

work [5] a robot was used for cognitive stimulation ther-

apy for individuals suffering from Mild Cognitive Impair-

ment (MCI) and/or Alzheimer’s disease. The goal of the 

interactions was to increase the participants’ cognitive at-

tention by playing different levels of difficulty. The games 

played were tailored to the needs of each individual to ad-

dress their different cognitive disabilities. There were two 

experiments where the feasibility of the system was tested. 

The first one consisted of an interaction between the robot 

and the user with the goal of helping the subject to im-

prove or maintain their cognitive attention through en-

couragements in a music-based stimulation game. In the 

second one the robot was present during the game and 

suggested a new scenario for the individual primarily fo-

cused on the problems revealed by the current game. 

 

 

 

 

3.1. Hypotheses of the Experiments  

In our experiments we wanted to test the following hy-

potheses: 

H1: Our modified interactive reinforcement learning al-

gorithm is able to increase the robot’s level of autonomy 

in a real-world social human-robot interaction scenario. 

H2: The elderly will be able to accept and build a positive 

relationship with the robot even only after two interac-

tions with it. 

 

3.2. The methodology 

In our setting the participants played two games called 

“Guess the fruit” and “Guess the animal” with a NAO ro-

bot. In the games the robot chose a letter and asked the 

participant to say a fruit/animal which name starts with 

the same letter, e.g. for A – apple/antelope. When the an-

swer was correct, the robot celebrated, otherwise it gave a 

hint about a possible correct answer. The game lasted until 

the subject gave correct answers for all letters. 

The technical description has to be divided into two 

parts, since in the experiments the robot was controlled 

remotely using the Wizard of Oz technique – however, our 

learning algorithm was running in the background to in-

crease the robot’s level of autonomy.  

The session itself took place in a room, where the sub-

ject, his/her caregiver and the robot were present. The in-

teraction was monitored by three cameras. The technical 

setup of the above can be seen in Figure 3. 

 

Fig. 3 The experimental setup 

 

 

The Wizard in the other room had a simple graphical 

user interface connected to the cloud at his disposal for 

controlling the robot and the learning process. To test our 

learning algorithm in a real-world social human-robot in-

teraction scenario we defined 4 states of the subject and 6 

types of actions of the robot, while the reward for each 

action ranged between 0 and 100. The 4 states were the 

following: 

 



- Correct answer – the state when the participant 

answered correctly 

- Incorrect answer – the state when the participant 

answered incorrectly 

- Doesn’t know – the state when the participant 

didn’t know the answer 

- Other – defined a state other from the above-men-

tioned, e.g. the state when the robot finished its ap-

plause 

 

During the cognitive experiments 6 types of actions 

  were the following: 

- Easy question – the action for asking an easy ques-

tion. As an easy question we defined the letters for 

which it is simple to find a fruit or an animal. When 

determining the difficulty of each question we an-

alyzed previous sessions where the games were 

played with a caregiver. 

- Question of medium difficulty – the action for 

asking a medium difficulty question. As a medium 

difficulty question we defined the letters for which 

it was harder to find a fruit or an animal, but there 

were more than on possibilities. 

- Hard question – the action for asking a hard ques-

tion. As a hard question we defined letters for 

which it was hard to find a fruit or an animal. In 

most cases there was just one possible correct an-

swer. 

- Help – for each letter we created a short descrip-

tion of a possible solution.  

- Applause – the action executed after each correct 

answer. We created 6 different applauses for both 

games. 

- Sorrow – the action executed after each incorrect 

answer. We created 6 different expressions of sor-

row for both games. 

 

4. Results 

The experiments were carried out in an elderly care facil-

ity, where the participants live and used to play cognitive 

exercise games with their caregivers twice a week. 

During our stay at the facility the elderly played two 

games with the robot. The first game was played by 12 

participants (3M/9F, average age 78.5, 56 to 94), and the 

second by 10, since two of the participants had to visit 

their doctors. We also have to note, that the participants 

were mentally healthy, except for one subject who shows 

the signs of early dementia, however, the caregivers found 

her suitable for our experiments. 

The results from the robot’s autonomy view describe the 

efficiency of the learning algorithm, comparing the per-

centage of actions executed autonomously (these actions 

were not chosen manually, but only approved by the Wiz-

ard) in the first and second session.  

Fig. 4 Averaged level of autonomy of VR on the Azure Cloud. 

 

The results shown in Figure 4 summarize the outcomes of 

the 2 interactions with 10 participants, who were able to 

attend both sessions (2 males /8 females, average age 78.5, 

in interval from 68 to 94). The results clearly show the in-

crease of autonomy of the VR and decrease the of the Wiz-

ard’s cognitive load. That means, that we increase the MI-

QTASK and decreased the HIQTASK.  

The developed cloud social robotics framework pro-

vides an ability to collaborate and use it with different us-

ers and robots (currently supports NAO, Pepper, DORO, 

Milo and Q.bo). In the near future we plan to include the 

Telenoid in collaboration with ATR in Japan. 
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