CoWoOZ — A cloud-based teleoperation platform for
social robotics

Gergely Magyar”, Peter Sin¢ak’, Jan Magyar , Kaori Yoshida™", Alessandro Manzi" ", Filippo Cavallo™""

“Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, TU Kogice, Slovakia
“Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics, TU Kosice, Slovakia

skokok

ok

Abstract—This paper presents our cloud-based teleoperation
platform, called CoWoOZ — ClOud-based Wizard of OZ. It
describes similar systems, such as Robot Management System
(RMS), OpenWoZ, CoWo0OZ’s predecessor Telescope and the
first version of the discussed platform. A special emphasis is
given to the description of new functionalities added to the
system, e.g. scenario management, custom script builder, client
application, etc. The paper also contains a comparison of these
systems, which can help researchers to choose the right one for
their work.

Keywords—cloud computing, human-robot interaction,

teleoperation, Wizard of Oz

[. INTRODUCTION

Since the early 2000s the cloud computing paradigm had a
great impact on various fields and robotics was not an
exception. In 2010 James Kuffner at the International
Conference on Humanoid Robotics introduced the concept of
‘cloud robotics’ [1]. He claimed, that robots using cloud
computing could offload CPU-heavy tasks to remote servers
and use smaller onboard computers. Since then many studies
utilized the advantages of this paradigm. For a comprehensive
summary of research done in recent years please refer to [2] [3]
and [4] respectively. However, one can notice, that many of the
applications were focusing on navigation and manipulation
tasks. Since our work is focused toward social and assistive
robotics here we provide a short review of papers dealing with
the use of cloud computing in human-robot interaction (HRI)
scenarios.

In [5] the authors used “cloud-connected social robots to
measure and model the effect of LEGO Engineering and its
collaborative nature on the development of social skills in
children with Autism Spectrum Disorder”. Another study [6]
used the cloud infrastructure to enhance the affective skills of a
humanoid robot. In this setup, the data collected by the robot
were processed in the cloud environment and based on the
results the robot got an instruction what it should do in the
given situation. In [7] the robot KuBo “relied on cloud services
extending its capabilities for human interaction and
environmental sensing to provide services such as Google
Calendar, Google Speech Recognition or Acapela VaaS (Voice
as a Service). Besides testing the feasibility of the cloud service
the goal of the experiment was to help elderly with various
tasks in their home. In [8] a cloud-assisted pillow robot was

Department of Human Intelligence Systems, Kyushu Institute of Technology, Kitakyushu, Japan
The Biorobotics Institute, Scuola Superiore Sant’ Anna, Pontedera, Italy

introduced which utilizing cloud resources was able to
recognize the user’s emotions and communicate with other
robots of the same type.

All the above mentioned studies used various cloud
services, except teleoperation, however, it is a crucial part of
HRI experiments these days. Most of those (52% of
publications at the annual HRI conference in the last three
years according to [9]) uses the Wizard of Oz (WoZ) technique
[10]. In general, we can say that it “is a research experiment in
which subjects interact with a (computer/robot) system that
subjects believe to be autonomous, but which is actually being
operated or partially operated by an unseen (hidden) human
being” [11].

To fill this gap we developed CoWoOZ, a cloud-based
Wizard of Oz system which is intended to become a common
platform for HRI researchers applying the WoZ method in their
work.

II. RELATED WORK

Although the field of cloud-based teleoperation in human-
robot interaction is not very broad, in recent years many
systems were developed for similar purposes (not exclusively
using cloud computing).

A. Robot Management System

Firstly, we can mention the Robot Management System
(RMS) presented in [12]. In the authors’ own words “RMS is
an open-source framework that allows researchers to quickly
and easily install, configure and deploy a secure and stable
remote laboratory”. It also allows users to create accounts and
this way gain access to robots and participate in research
studies. The main goals when creating the system were:

e Robot and interface-independent design

e Support for easy creation and management of new
interfaces

e Secure user authentication and authorization

e Creation, management, logging and analysis of
multi-condition user studies

e Website content management

The architecture of RMS can be seen in Fig. 1.

= 2 HTTPS (HTMLJJS),
£ \ RMS Web Server
e ===l
) - A— - |
o Clients
‘/Z\
Physical Envir bo Envir

+ ROS Servers
+ Room Cameras

+ ROS Servers
+ Gazebo Simulators

ROS Messages/Services,

IROS Algorithms & Servlcesl

Physical Robots

Simulated Robots

Fig. 1 Architecture of the Robot Management System [12]

The system works with Robot Operating System (ROS)
enabled robots. It was successfully tested with PR2 (Willow
Garage), youBot (KUKA) and Rovio (WowWee). The
feasibility of the system was validated by human participants
who were remotely controlling a robot in a series of object
retrieval tasks.

B. OpenWoZ

Another example is OpenWoZ by G. Hoffman [13]. In
general, it is a framework “designed to be updated during
operation by an expert”. OpenWoZ is implemented as a thin
HTTP (Hypertext Transfer Protocol) server running on the
robot and a cloud-backed multi-platform client schema. The
WoZ server accepts REST (Representational State Transfer)
requests from the clients simultaneously (see Fig. 2). This
feature allows the addition of commands, new sequencing of
behaviors, and adjustment of parameters, all during runtime.

Evaluators Clients -1 Robot

Client #1 } L
» - l RESTful HTTP Server

Interface

Command +
Parameters

Interpreter

Server Resource Folders

play_sequence (name, speed, (

amplitude, mirror) =L

A Audio Clips | =

= play_audio (nane, volune) _,U Auso Clps
| |-

Int avallable Events and Sequences
Push updates | edits during run-time

Motor Sequences.

[event name | [soquence name Cloud DB Seren gy

trigger trgger show_inage (nae, %, ¥) deetppe]
label label | show_text (text, x, y, font) | ’LL Image Files
| Events & clear () ——
command s L SkRecas
| e et
tme. =3 ane. (parans...) Upload Files\
ovent nane (parans..)
N Cloud DB —

Fig. 2 Architecture of OpenWoZ [13]

As it was mentioned before, the clients communicate with
the server via requests. E.g. the command
/move/wave?speed=.5 sent to the robot executes a wave
movement at 50% speed. The command
/sound/hello?volume=1 makes the robot say “Hello”
at full volume.

The system was tested on a newly constructed robot with
capabilities to move, play and record sounds and display data.
However, no ‘commercial’ robot was connected to the system
neither it was used in a real-world HRI scenario.

C. Telescope

The predecessor of CoWoOZ was Telescope, which was
developed at the Center for Intelligent Technologies at the
Technical University of KoSice as a server-based modular
system for teleoperation of connected devices [14]. In this
context, a device is any electronic appliance which can
communicate over a network and can be accessed
programmatically.

When designing the system a special effort was made to
make the system platform-independent and so allow the
teleoperation of devices connected to a heterogeneous
environment. By heterogeneous environment we mean a
system consisting of devices with different APIs (Application
Programming Interface), programmable in different languages
or with different user interfaces. This was solved by
introducing a wrapper (similar to a device driver) which
translated Telescope’s commands into a format understandable
by each device. Such a wrapper was developed for each type of
device.

In Fig. 3 Architecture of Telescope the architecture of the
system is shown. It consists of three parts:

1) Wrapper on the devices — this block consists of the
teleoperation and telediagnostics module. The first
one serves for translating commands for remote
control. The latter is providing information about
the overall state of the diagnostics device and
sends those to the telediagnostics database.

2) Event and diagnostics servers and databases — the
core of Telescope, which ensures the
communication between the teleoperator and the
teleoperated devices. It is worth noting, that all
communication was realized using websockets.
The diagnostics database store data which serve as
a basis for possible error and fault detection.

3) Webpage — a simple webpage was implemented as
a teleoperation interface and for visualizing
diagnostics data.

teleoperaton faiaees IRV RRR oo

A~
Event & database servers

Wrapper
R e, telediagnistics m

Diagnostics & database server

FE= = =
Ra Ny RaN AuN
I;\I v 0w
=

il amp

e

Fig. 3 Architecture of Telescope [14]

The system was tested using the NAO humanoid robot.
Teleoperators were able to move the robot’s joints, set its
stiffness, use its text to speech feature and launch pre-
programmed behaviors. In addition to that, Telescope allowed
adding, removing and sharing devices between users, making it
possible to control one device by multiple teleoperators.

III. COW0OZ — CLOUD-BASED WIZARD OF OZ

In general, CoWoOZ is a cloud-based teleoperation
platform for various types of robots built on top of Microsoft
Azure. Unlike its predecessor Telescope, this system uses the
advantages of the cloud environment, such as scalability or the
lack of need to take care of a physical server, since these are
ensured by the cloud provider.

The system consists of two main building blocks, the
frontend, and the backend, as it is shown in Fig. 4.

Backend

Worker
role with
WEBAPI

Database

Frontend

Web
portal

Web services

Fig. 4 Architecture of CoWoOZ [15]

The frontend is represented by a webpage which serves as
an interface for teleoperation. It allows the user to carry out
CRUD (Create, Read, Update, and Delete) operations over the
robot behaviors and types and also play the chosen behaviors
on a real robot.

The backend consists of the following two parts:

e Worker role with WEBAPI ensures the
communication between the server and the robots
and also between the server and the web page via
HTTP protocol.

e The database contains a table for each type of
robot and a blob container (a MS Azure service for
storing large amounts of unstructured object data,
that can be accessed from anywhere in the world
via HTTP or HTTPS) for each table entry for
storing robot behaviors.

After clicking the “Play behavior” button on the webpage,
the name of the movement and the robot’s type are added to a
dictionary. The wrapper on the robot is constantly sending
requests to the cloud service to find out what it should do.
When a request arrives to the service it checks the dictionary if
it contains anything. If so, the appropriate script is selected
from the database and sent to the robot.

The pairing mechanism between a specific robot and the
cloud service is very simple. On the webpage, the user assigns
a unique number to the robot which matches the one in the
wrapper (and vice versa). This unique number is also added to
the dictionary, this way we can ensure, that the chosen
behavior is played on the right robot.

Currently, the system can be used in three different ways:
1. 1 user controls 1 robot

2. 1 user controls n robots

3. nusers control 1

CoWoOZ currently supports three robotic platforms: NAO
(Softbank Robotics), Milo (Hanson Robotics) and Q.bo
(theCorpora). Experiments for measuring the response times
for these platforms were carried out. The results can be found
in[15].

IV. ADVANCED FUNCTIONALITIES OF COW00Z

Although the system presented in Section 3 was sufficient
as a proof of concept of teleoperation of robots from a cloud
environment, in order to use it in HRI research it needed some
new features. These will be further described in this section.

A. Web interface

In the first version of the system, operators had at their
disposal just a list of names of the available behaviors. In order
to make their life easier we recorded the movements and
created short animations. The resulting interface can be seen in
Fig. 5. Please note, that the webpage’s design is still in
development and in the future will be further improved.

Cloud-based Wizard of Oz Controls Scenarios

SCENARIO #1

MOTION LIBRARY

EMOTION LIBRARY

Fig. 5 CoWoOZ’s teleoperation interface

1) Security
Another issue which was not solved in the previous version
was security and management of user accounts. The original
system didn’t contain any authentication process. Since we
didn’t want to completely rewrite parts of the system, we chose
a less invasive way of user authentication, using a custom
solution.

The security of user login data is now ensured by hashing
and salting them because we always have to assume that users
ay (and most likely will) use the same login information
elsewhere.

2) Updated database functionality

CoWoOZ already offered basic database operations, such
as adding behaviors or new types of robots, reading and
updating them, however, it lacked the option to delete entries.
The usual approach handling this problem is to set a flag
marking deleted content and so both deletion and restoration
are done simply by changing the flag. We solved this issue by
moving the deleted entries to a new table, hence they can’t be
queried anymore without the need to filter all entries based on
flags.

3) Asynchronous web interface

Besides the improvements mentioned in the introduction of
this subsection, we introduced asynchronous method calling.
This means that the application is not reloaded all the time an
action is taken because the browser remembers the state of the
web and replaces only desired elements (if any). In practice it
means that after executing a movement on the robot, the
interface stays in the state it was when the movement was
selected. This feature is very convenient for operators since
they don’t have to wait for the webpage to reload after each
action taken.

4) Scenario management

Another new requirement for the system was a more
effective management of scenarios. For this, the database
model was revised. It now enables filtering the robot behaviors
based on scenarios, robot types, and type of behavior. When
uploading a new behavior, the user must indicate its purpose.
There are two basic categories: motion and emotion. The
former represents basic movements for the robot and are vital
in accomplishing the desired goal, while the latter are primarily
aimed at interaction. Emotion behaviors are further divided
based on the emotions on Plutchik’s wheel of emotions (joy,
trust, fear, surprise, sadness, anticipation, anger, and disgust).

The database structure also enables behavior sharing
between users but the functionality is yet to be implemented. It
makes it possible for system users to make their tentative robot
behaviors private or add them into a public library, creating an
environment for effective cooperation between institutions.

The primary navigation structure is based on scenarios,
which represents an HRI session and it contains every behavior
a robot might need during that interaction. The system’s user
can add robot behaviors from their computer or from the
system’s library of behaviors. More users can have access to a
given scenario and they can assign robots to the scenario. This
creates an easy-to-use interface for scenario management.

Movement

movementid int PK
movementname varchar(50)
movementdescription
movementtype varchar(10)
Robot robottype varchar(20)
public int

i

scenariomovement

Scenario projectid int PK FK
scenarioid int PK FK

I {

varchar(250)

robotid int PK
robotDescription varchar(500)
robotType varchar(20)

scenariorobot
robotid int PKFK
scenarioid int PKFK| [scenarioid int PK
scenarioname varchar(50)

\‘{ cer ription varchar(500)

Fig. 6 The updated database structure

Behaviors can be played on the robots accessible from the
scenario directly from the system. The system was designed in
a way that it should be able to determine which robots are
online and offer the user a list of available ones but this
functionality hasn’t been added yet.

B. Thin client

While the web page provided a great way to control robots
remotely, it had some limitations when controlling multiple
robots by one user. In this case, the operator was only able to
send the same instruction to all connected robots. To overcome
this difficulty we decided to develop a custom-tailored thin
client.

1) Design

The teleoperation center for which this client was meant
consists of a single computer with 6 monitors, placed in a
laboratory with 4 IP cameras. However, it is fully functional in
any other setup. The thin-client was designed to offer the full
functionality of the web portal in addition to camera streams,
direct control of the robot, and a script builder for creating own
scripts.

The intended usage of the client is to have one of the
screens used for the main interface, up to four occupied by
cameras and the remaining monitors (amount depends on
actual camera usage) unused by the client, allowing the
teleoperator to run other assistive programs simultaneously.

In Fig. 7 the main window of the client can be seen when a
NAO robot is connected. On the left, the robot’s type and its
unique identifier can be set and also information about the
robot’s battery level and processor temperature is displayed. In
the middle users can start the stream of the [P camera. On the
right, the actions from the cloud database for the connected
robot can be found.

| s Rafrasn Swp Dwsct Control
| ey fonwared backwards . gt
Stard Irit ~Tumish4S ~Tumlaf o0 —Tum 100
~TUMRGIAS | - Tum RGN 80 S Do test
- Disconnect
st istong? Istanmgz storang?
Addscript | Deleta Script
isleningiel] steningefl3 steringight! [Er—"
Doytalk] Bodytakz bodyead booytaiks
bodylaks bodytaks bodyakd bk
Acvon Dallery level Tempershre bodytakd ‘Dodytatcid booyakil boaytak1d
de 50 2
basytalk14 bodgtak1s bodyaki6 bocplak1?

Fig. 7 Teleoperation interface of the thin client

2) Communication with the cloud service

The original solution utilized standard HTTP
communication with a response unsuitable for the client. That’s
why a new controller was added to the system with two
methods. One for handling the client’s requests and the other
one ensuring two-way communication with the robot during
direct control. The messages between the client and the service
have a JSON (JavaScript Object Notation) format. On both
sides of the communication, a parser is used to decode the
received message.

3) Camera streams
IP cameras in our laboratory already contained a web
interface with controls in addition to the video stream. Our goal
was to integrate it with the client which is a local application. It

was done by using the GeckoFX library which implements a
Firefox browser into a Windows Forms application.

4) Direct control
In some cases, especially in mobile robotics research, it is
not enough for the operator to execute predefined scripts on the
robot. That’s the reason why we implemented the direct control
module. By which, we mean moving the robot in the
environment in real-time.

Unlike the teleoperation discussed so far, this module is not
meant to work with a group of robots with the same ID as it
removes the action from the dictionary when retrieving it. In
our first approach, the robot moved until it received a signal to
stop. This, however, had proven problematic due to varying
(but generally high) response times resulting in the possibility
to damage hardware or the environment. Because of that, we
moved to our current solution, where the robot is allowed to
move only a few centimeters and then it has to check whether it
can move further. If so, the process repeats, instead of the
continuous movement implemented first. As a downside, we
have to mention the need of another wrapper for direct control.
In the case of the NAO robot, unlike the teleoperation wrapper
which requires streaming of each action from the server, the
wrapper for direct control has pre-programmed actions at its
disposal, which are calling relevant modules from the naoqi
library based on the parsed JSON message from the server. In
addition to movement, text to speech postures are also
available for this type of robot.

Q.bo uses similar logic, but the text to speech functionality
is not supported. The direct control is also limited to movement
of the robot and rotation of its head. Since Q.bo is using ROS,
the responsible ROS topics are called while being directly
controlled.

Milo’s constraints with movement render it unsuitable for
the same type of control as with NAO or Q.bo so its direct
control is only based on directly lined scripts from the
teleoperation module.

5) NAO live status updates

NAO being one of the most used humanoid robots in HRI
research, we believe that a feature providing the operator with
real-time information about the status of the robot’s hardware
can be useful. In practice, it means that a NAO robot running a
modified wrapper will report desired values within each
iteration of the main loop. Currently, it reports its movement
status (idle or in action), battery level and processor
temperature. When using direct control, this report is included
within the request for its next action. The live status update
feature is designed to be handled dynamically so the client
doesn’t have to be recompiled to reflect the changes and is able
to work with any robot which reports its status.

6) Script builder

The thin client also contains a demo implementation of a
script builder, currently supporting the NAO robotic platform.
Its goal is to provide a simple graphical user interface for users
who would like to create a custom script for the robot (see Fig.
8). It does so by providing templates for the robot’s behavior.
This allows people without any prior programming knowledge
to create their own scripts for the supported robotic platforms.

However, programmers wanting to add more functionality are
able to do so by selecting “custom” and manually typing the
script.

| & Add senpt - O *
Upkoad sxisting script Pl Sospt
move - 100 || Insen Clear Remave
say = | |Hello workd || Insen Clear Remave
move - i-'l 0.0 | Add Clear Remaove
Robaot Nama: Seript nama: Dascriphion:
(=) | Sapll my scnpl upload

Fig. 8 Script Builder’s interface

V. COMPARISON OF THE DISCUSSED PLATFORMS

This section contains a comparison of the following
systems: OpenWoZ, Telescope, CoWoOZ (basic version),
updated CoWoOZ based on various criteria. We decided to
exclude Robot Management System from the comparison
because it is ROS-based and can’t be directly compared with
the other ones. The comparison was done by the following
criteria:

e architecture — main architecture of the system

e generality — whether the system supports different
robotic platforms

e diagnostics — whether the operator is informed
about the current state of the robot’s hardware

e direct control — whether the robot can be
controlled directly by using a keyboard or a
joystick

e control interface — where the main controller
interface is located

e video stream — whether the platform comes with a
feature for streaming video (either from the robot
or from an external camera)

e scenario management — whether users can create
their own scenarios with robot behaviors of their
choice

e building own scripts — whether the system is
suitable for creating new, custom behaviors and
play them on a robot

TABLE 1 COMPARISON OF SELECTED PLATFORMS

I OpenWoZ | Telescope | CoWoOZvl | CoWoOZ |
Architecture Server-client | Server-client | Cloud-client | Cloud-client
Generality No Yes Yes Yes
Diagnostics No Yes No Only for NAO
Direct control No Yes No Yes
Control interface Local Web Web Web and local
Video stream No No No Only in client
Scenario management No No No Yes
__Building own scripts Yes No No Yes
Sharing behavior No No No Yes

From the table it is evident, that the current version of
CoWoOZ has the most features compared to the other systems,
however, many of those are currently in experimental phase or
are supporting just the NAO robotic platform.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described our cloud-based Wizard of Oz
system CoWoOZ and then compared it with its predecessor
Telescope, its first version, and the OpenWoZ system. The
comparison shows that the current version of our system has
the most functionalities from which many were introduced in
the second version. We believe that these new features can
further increase the Wizard’s productivity and can be helpful
for HRI researchers.

Although our system covers most of the needs of a Wizard
in a social HRI scenario, we are always aware of its
weaknesses. The most urgent issue which has to be addressed
is the user interface. Our goal is to find the right balance
between aesthetics and functionality while allowing users to
design their own interfaces according to the scenario for which
they are building it. In the future, we also want to extend the
GUI of the thin-client by adding the animations into it
(currently, these are available only on the web page).

Regarding the other functionalities of the thin-client (direct
control and live status updates), we want to add support for the
other robotic platforms as well, namely Q.bo and Milo. Also,
Script Builder must be extended in order to create more
complex robotic behaviors and not only for NAO.

Our ultimate goal is to equip the existing teleoperation
platform with learning capabilities as it was proposed in [16].
We have already done experiments for proving that interactive
reinforcement learning can be used for learning robotic
behavior from the Wizard in social HRI [17][18]. We also have
to note that the experiments were carried out using a simulation
of HRI. In the future, we plan to test the system (with learning)
in an assistive HRI scenario.

ACKNOWLEDGMENT

This research work was supported by the Slovak Research
and Development Agency under the contract No. APVV-015-
0731 and research project supported from 07-2016 to 06-2019.

(1
[2]

B3]

(4]
[5]

[l

[7]
[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

J. J. Kufner, “Cloud-enabled robots,” in IEEE-RAS International
Conference on Humanoid Robotics, 2010.

K. Goldberg, B. Kehoe, “Cloud robotics and automation: A survey of
related work,” in EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2013-5, 2013.

B. Kehoe, et al., “A survey of research on cloud robotics and
automation,” in IEEE Transactions on Automation Science and
Engineering, vol. 12, no. 2, pp. 398-409, 2015.

Cloud robotics and
http://goldberg.berkeley.edu/cloud-robotics

automation [online],

J. Albo-Canals, et al., “Modelling social skills and problem solving
strategies used by children with ASD through cloud-connected social
robots as data loggers: First modelling approach,” in Conference
Proceedings New Friends 2015: The 1% International Conference on
Social Robots in Therapy and Education, pp. 1-2, 2015.

Y. Ma, et al, “Cloud-assisted humanoid robotics for affective
interaction,” in 2™ International Conference on Control, Automation and
Robotics (ICCAR), pp. 15-19, 2016.

A. Manzi, et al., “Design of a cloud robotic system to support senior
citizens: The KuBo experience,” in Autonomous Robots, pp. 1-11, 2016.

M. Chen, et al., “Cp-robot: Cloud-assisted pillow robot for emotion
sensing and interaction,” in International Conference on Industrial IoT
Technologies and Applications, pp. 81-93, 2016.

P. Baxter, et al., “From characterising three years of HRI to
methodology and reporting recommendations,” in The 11" ACM/IEEE
International Conference on Human-Robot Interaction, pp. 391-398,
2016.

L. D. Riek, “Wizard of Oz studies in HRI: A systematic review and new
reporting guidelines,” in Journal of Human-Robot Interaction, vol. 1, no.
1,2012.

B. Hannington, M. Bella, “Universal methods of design: 100 ways to
research complex problems, develop innovative ideas, and design
effective solutions, Rockport Publishers, 2012.

R. Torjs, D. Kent, S. Chernova, “The robot management system: A
framework for conducting human-robot interaction studies through
crowdsourcing,” in Journal of Human-Robot Interaction, vol. 3, no. 2,
2014.

G. Hoffman, “OpenWoZ: A runtime-configurable Wizard of Oz
framework for human-robot interaction,” in 2016 AAAI Spring
Symposium Series, 2016.

L. Mizenko, et al., “Telescope: System Overview,” in Developments in
Virtual Reality Laboratory for Factory of the Future, pp. 100-105, 2014.

T. Cadrik, et al., “Cloud-based robots and intelligent space teleoperation
tools,” in Robot Intelligence Technology and Applications 4, pp. 599-
610,2017.

G. Magyar, M. Vircikova, “Learning from the Wizard of Oz on cloud in
social human-robot interaction: Proposal,” in IEEE 19" International
Conference on Intelligent Engineering Systems, pp. 107-111, 2015.

G. Magyar, M. Vircikova, P. Sincak, “Interactive Q-learning for social
robots that learn from the Wizard: A pilot study,” in Proceedings of the
2016 IEEE International Conference on Systems, Machine and
Cybernetics, 2016.

G. Magyar, M. Vircikova, P. Sincak, “Increasing the robot’s level of
autonomy in social human-robot interaction through interactive
reinforcement learning,” in New Friends 2016: 2™ International
Conference on Social Robots in Therapy and Education, 2016.

