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Abstract— This paper deals with classification algorithms as 
one of the basic principles of pattern recognition. We analyze their 
effect to a feature space and compare the type and the shape of the 
separating and decision surface, respectively. We proposed a novel 
classification approach based on Cumulative Fuzzy Membership 
Function that creates a decision surface in a different way as an 
MF ARTMAP neural network. We call the proposed decision 
surface Cumulative Fuzzy Class Membership Criterion 
(CFCMC), which we compared with the decision surface of MF 
ARTMAP termed as Membership Function. The analysis of both 
decision surfaces shows that CFCMC has better adaptability and 
flexibility in forming a decision boundary than Membership 
Function from MF ARTMAP classifier. Based on the result of this 
analysis we assumed that classifier built based on CFCMC should 
achieve higher classification accuracy than the one built based on 
Membership Function. Furthermore, we identified some issues, 
solutions and possible future challenges of our proposed novel 
method, such as the expansion into incremental learning and 
semantic information extraction.  

Keywords—component; feature space, decision surface, fuzzy 
membership function of unknown input to class, fuzzy sets, neural 
networks, classification accuracy, “not classified” pattern 

 

I.  INTRODUCTION 

Classification is one of the basic principles of pattern 
recognition, where it plays important roles. The principles are 
presented in Fig. 1. As it is obvious from the Fig. 1, the 
determination of the feature space plays a key role in overall 
pattern recognition process. Feature selection and classification 
are based on this information, and the ability to approximate the 
nonlinear discrimination function determines the success of a 
classification procedure. These principles raise a question of 
whether it is more useful to invest time for selecting a good set 
of features or to develop a general and robust classification 
procedure based on the all given features. Certainly, these two 
problems are closely related and usually feature selection 
techniques assume a specific type of classifier. The first 
approach is based on the consideration that the selection of 
relevant features help the classifying process while the second 
one is based on the consideration that features selection itself is 
inherent in the learning process of the classifier without the 
necessity for features selection. Often, a combination of them 

could be the best approach for real-world applications [1][2]. 

In this paper, we focus mainly on the formation of the 
decision boundary for classification. We compare classifiers 
with respect to their ability to form relevant decision 
boundaries. Here, we present a novel fuzzy modeling approach 
of Cumulative Fuzzy Class Membership Criterion (CFCMC) 
that creates decision hyper-surface over feature space for 
classification problems. This method is compared with a similar 
classifier, namely neural network Membership Function 
Adaptive Resonance Theory MAP (MF ARTMAP), which is 
based on fuzzy membership decision. The advantage of both 
methods is that they are not “black-box” in a strictly way, in 
contrast to, e.g. Multi-Layer Perceptron because they created 
decision surfaces that can offer semantic information about one 
particular class as well as relations among classes. The 
advantage of CFCMC over MF ARTMAP is that it is able to 
form a decision surface with better adaptability and flexibility. 
Therefore, it provides higher classification accuracy and better 
generalization ability.  

In recent years, another different fuzzy modeling 
approaches were built and used for different tasks. In [3], an 
adaptive Evolving Fuzzy System-based approach for creating 
dynamic and evolving model of Activities of Daily Living, 
which are described by one or more fuzzy rules, were proposed. 
New framework for the symbolic representation of data, 
referred to as signatures is presented in [4]. Authors explain 
signatures as convenient hierarchical symbolic representation 
of data structuring into vectors of fuzzy values. This data 
structure includes values and also the significance of these 
values by the nested vector construction. Fuzzy signatures in 
conjunction with fuzzy S-trees were also used for fuzzy medical 
image retrieval (FMIR) using vector quantization in the medical 
area, concretely in mammography [5]. 

The paper is organized as follows: Section II explains about 
the difference of the decision boundaries in the feature space. 
In Section III explains about CFCMC and its comparison with 
Membership Function. Section IV presents the learning 
algorithm of the proposed method. Section V describes 
experiments and results and Section VI attempts to raise issues 
of the proposed method. Conclusion and future work are given 
in Section VII.  
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Fig. 1 Basic principles of pattern recognition 

II. CLASSIFIERS AND FEATURE SPACE 

A. Definition of feature space 

Let’s consider data where the ݅-th pattern is described with 
݊ features as follows: 

పഥݔ  =  ሺݔଵ, ,ଶݔ ,ଷݔ … ,  ࢀሻݔ

Hence, pattern ݔపഥ   is a point in an abstract space Թ. 

B. Learning algorithms and feature space 

Classifiers differ from one another in the separating 
(decision) boundary they create in the feature space. Given a 
problem with ݊ features, then we have two types of approaches. 

 
Fig. 2 Different learning models and their effect on feature space [13] 

The first group of classifiers calculates ݊ െ 1 dimensional 
classification boundaries in the ݊  dimensional feature space. 
For instance, Decision trees [6] algorithm recursively splits up 
patterns based on one feature at a time and draw axis parallel 
boundaries to separate two classes (Fig. 2 a)). The k-nearest 
neighbors [7] algorithm draws a Voronoi diagram, which 
construct convex polygons around the patterns for a more 
complex partitioning (Fig. 2 b)). Perceptron [8] is a linear 
classifier. Thus, it creates hyperplane in the feature space just 

as a naïve Bayes classifier [9] does (Fig. 2 c)). Multi-Layered 
Perceptron (MLP) [10] is the extension of linear Perceptron 
being able to run non-linear classification (Fig. 2 d)). The 
ARTMAP neural networks [11] belong to the model of neural 
networks based on Adaptive Resonance Theory (ART) [12]. 
The fundamental idea of basic ARTMAP neural networks is the 
clustering of feature space and mapping created clusters to 
classes. That leads to constructing of ellipsoids around the 
examples (Fig. 2 e)). 

The second group of classifiers calculates decision surface 
over the ݊  dimensional feature space by adding one more 
dimension and create dimension  ݊  1 . A good example of 
such a classifier is Membership Function (MF) ARTMAP 
approach introduced in [1] and reviewed in [14] (Fig. 3).  

 

 
a)            b) 

Fig. 3 Decision surface of dimension n+1 is referring to Fig. 2, which represents 
n = 2 dimensional feature space created by MF ARTMAP. Axis x and y 
represent dimensions of the feature space; axis z denotes the value of 
membership. Surface for class “+” is visualized on a), for class “-“ on b) 

MF ARTMAP assumes that data in feature space are 
organized in fuzzy clusters. The fuzzy cluster is considered as 
a fuzzy set A in multidimensional feature space representing a 
set of ݊ ordered couples, e.g.: 

ܣ ∈ ቄൣݔଵ,ߤሺݔଵሻ൧, … , ቂݔ,ߤ ቀݔ
ቁቃቅ,                ሺ1ሻ 

 

where A is a fuzzy set and ቄሾݔଵ,ߤሺݔଵሻሿቅ are ordered couples, 

ݔ = ሾݔଵ, … ,  ሿ் being a point in ݊ dimensional feature spaceݔ
and ߤሺݔሻ a value of the membership function of ݔ to the fuzzy 
cluster (set) A, while ݊  is the number of pattern. There are 
many fuzzy clusters in the feature space and a certain set of 
fuzzy cluster creates fuzzy class ܥ  where ݅ = 1 … ݊ in which 
݊ is the number of classes defined in the training set. Fuzzy 
class is the union of fuzzy clusters belonging to a considered 
class, e.g.: 

ܥ = ቐራ ܣ




ୀଵ

ቑ,                                  ሺ2ሻ 

where ܣ
  is the ݆-th fuzzy set belonging to ݅-th class. Therefore, 

the relation between ߤ
ሺݔሻ and ߤሺݔሻ is as follows: 



ߤ
ሺݔሻ =  max


ቆߤೕ

 ሺݔሻቇ ,                        ሺ3ሻ 

where ܣ
  is a fuzzy cluster belonging to class ܥ and ݉ is the 

number of fuzzy clusters creating a class ܥ . Membership 
function is considered as:  

μሺxሻ =  
1

1   ∑ ቚݔ െ ݔ 
ܧ

ቚ
ி

ୀଵ

,                      ሺ4ሻ 

where ݊ is the number of dimensions, ݔ is a value of the ݅-th 
feature of the input vector x and ݏݔ ܧ ,  and ܨ are parameters 
of the fuzzy cluster for the ݅-th dimension. The output from MF 
ARTMAP for an unknown pattern  x  is a vector of 
memberships μେ. Then the decision rule for a winner class CL 
of the unknown pattern x is as follows:      

CLሺxሻ  = ܥ 
ୟ୰୫ୟ୶


൬ఓ

ሺ୶ሻ൰
                      (5) 

III. PROPOSED METHOD 

A. Cumulative Fuzzy Class Membership Criterion 

The method is based on the assumption that data in feature 
space are split into ݊ classes ܥ where ݅ = 1 … ݊. Each class 
ܥ  is defined with training patterns 

  where ݆ = 1 … ܰ and ܰ 
is the number of training patterns of the ݅-th class. Each training 
pattern defines a fuzzy class membership criterion  κሺݔሻ , 
which is considered as Cauchy-like bell shaped function: 
 

κೕ
 ሺݔሻ =

1

1  ቆ
ฮ

 െ ฮݔ
ܧ

ቇ
ி

,                            ሺ6ሻ 

 
where ݔ  is an input vector, ‖

 െ ‖ݔ  is Euclidian distance 
between ݆-th training pattern of the ݅-th class and input vector. 
ܧ  and ܨ are set of parameters for the ݅-th class. 

Then Cumulative Fuzzy Class Membership Criterion for 
class ܥ is defined as follows: 

 

χ
ሺݔሻ =  κೕ

 ሺݔሻ,                               ሺ7ሻ

ே

ୀଵ

  

 
where  χ

ሺݔሻ is the value of CFCMC for an unknown pattern 

ݔ  to the class ܥ . The output from proposed method for an 
unknown pattern ݔ is a vector of values of CFCMC χ. Then the 
decision rule for winner class CL of the unknown pattern x is as 
follows: 

CLሺxሻ  = ܥ 
ୟ୰୫ୟ୶


ቆχ

ሺ୶ሻቇ
                       (8) 

B. Comparison of Cumulative Fuzzy Class Membership 
Criterion and Membership Function surface 

The main difference between CFCMC and Membership 
Function can be seen by comparing equations (3) and (7) for the 
computation of membership to one particular class. In MF 
ARTMAP, at first, membership of unknown pattern to each 

cluster of the same class is computed. The final membership 
value to class ܥ  is the highest one. In CFCMC, fuzzy class 
membership criterion  κሺݔሻ of unknown pattern ݔ for all 
training patterns are computed. However, in contrast with MF 
ARTMAP, the final value of criterion membership will be the 
sum of them. In Fig. 4 and Fig. 5, decision surfaces of 
Membership Function and CFCMC is shown, respectively. For 
this purpose, simple one dimensional data with two classes (red 
and blue color) with a small overlap between them was used 
(displayed in Fig. 4 and Fig. 5 on dotted line). Each class 
consists of four samples, which are displayed using a star 
symbol. As can be seen in Fig. 4, MF ARTMAP created two 
clusters, one for each class. Two samples were incorrectly 
classified (marked with arrows); one sample from the blue class 
was classified to the red class, and one sample belonging to the 
red class were classified to the blue class. Whereas in Fig. 5, 
CFCMC was able to adapt more precisely to given data, which 
caused a higher classification accuracy, because all samples 
were correctly classified despite of an overlap between classes. 
Thus, we assume that classifier built based on CFCMC should 
achieve higher classification accuracy than the one built based 
on Membership Function, because of its better adaptability and 
flexibility in forming the decision boundary.  

If we consider a two-dimensional classification situation 
according to the feature space in Fig. 2, we can visualize the 
CFCMC approach in three-dimensional space in the Fig. 6. We 
can see a comparison with Fig. 3 which represents an MF 
ARTMAP approach. It can be seen that the proposed CFCMC 
is also able to generate decision boundary with better 
generalization ability than MF ARTMAP.  

 Another difference between Membership Function and 
CFCMC is based on the domain of criterion membership 
values. The membership function is based on fuzzy theory. 
Therefore range of membership values of unknown vector ݔ to 
class are from interval ൏ 0; 1 . The range of CFCMC does not 
have to fall on this interval because the value of criterion 
membership to class depends on all train patterns of the same 
class.  

 
Fig. 4 Decision surface created by MF ARTMAP 



 
Fig. 5 Decision surface created by CFCMC 

 
a)           b) 

Fig. 6 Decision surface of dimension n+1 is referring to Fig. 2, which represents 
n=2 dimensional feature space created by CFCMC. Axis x and y represent 
dimensions of the feature space; axis z denotes the value of cumulative fuzzy 
membership criterion of a point in the feature space determined by (x,y) to the 
class. Surface for class “+” is visualized on a), for class “-“ on b) 

IV. ALGORITHM DESCRIPTION 

In this section, we describe the algorithm for finding the best 
shape of CFCMC surface for input data. The algorithm consists 
of two phases: 

● Initialization phase – creating the CFCMC surface  

● Learning phase – adjusting the shape of the 
CFCMC surface 

A. Initialization phase 

Initialization phase starts with splitting input data into three 
sets: a training set, a validation set, and a test set. Each set plays 
a specific role in one of each phase. The role of the training set 
is to create CFCMC decision surface. By validation set, during 
the learning phase, this surface is stretched (extended) to cover 
all validation pattern. Testing set is used for the final evaluation 
of the created decision surface.  

Afterward, the values of parameters E and F for each class 
for equation (6) are initialized. These parameters affect the 
shape of the fuzzy class membership criterion κ. Every fuzzy 
class membership criterion κ  of the ݅-th class has the same 
value of parameters E and F. Later, the threshold for the “not 
classified” patterns is initialized. If the value of criterion 
membership of an unknown pattern ݔ is below the threshold, 

pattern is “not classified”. Finally, the CFCMC surface is 
created using training set and initialized parameters. First, using 
each training pattern, fuzzy class membership criterion  κ  is 
computed using equation (6). The shape of CFCMC surface for 
each class is created applying equation (7).  

B. Learning phase 

Assume that training patterns of a given training set belong 
to ݊  classes. This generates vector ̅ of parameters for each 
class ܥ , where ݅ = 1 … ݊, 

̅ = ,ଵܧൣ ;ଵܨ ,ଶܧ ;ଶܨ … ; ,ܧ ;ܨ … ; ܧ
, ܨ

൧.      (9) 
 

The goal is to find optimal values of E and F parameters for 
each class. To reach this goal, it is possible to use any 
optimization algorithm, for instance, evolutionary or genetic 
algorithm, hill climbing methods or gradient methods, we 
decided to employ a well-known simulated annealing [15] 
because of its simplicity and implementation clarity.  

Simulated annealing is suitable for utilization in the wide 
range of optimization problems; the only requirements is a 
definition of the cost function. We defined cost function as the 
classification accuracy of training and validation set and as a 
ratio of “not classified” pattern. The classification accuracy was 
computed as a Kappa coefficient [16] from the contingency 
table. The ratio of “not classified” patterns is the ratio of a 
number of “not classified” patterns to a number of all patterns 
from the corresponding set.  

V. EXPERIMENTS AND RESULTS 

For experiments were used freely available benchmark data 
from UCI Machine Learning Repository. The aim was a 
comparative analysis of method developed during this research 
with a similar method, improved MF ARTMAP proposed in 
[14].  

A. Experiments 

In the experiments, 20% selections of the patterns of each 
data set are allocated for testing set for both methods. For MF 
ARTMAP, remaining 80% of selections form the training set 
and for CFCMC, 60% form training set and remaining 20% 
patterns form validation set. Parameters for MF ARTMAP was 
initialized as follows: E = 10; F = 6; recognition layer threshold 
(“not classified” pattern threshold) – 0.15; comparison layer 
threshold – 5. 

Parameters for CFCMC was initialized in a different way. 
The value of E parameter was initialized as the average distance 
between each pattern and the closest one in the training set. F 
parameter was set to value 2.5. The threshold for “not 
classified” patterns  was set to 15% of the highest criterion 
membership value χ.  

During learning phase, for CFCMC approach, vector ̅ 
from Eq. 9 for each data set was generated with initialized 
values and optimized with Simulated Annealing using cost 
function defined in section IV.B. MF ARTMAP neural network 
was trained by learning algorithm described in [11]. 

B. Results 

Table I. presents the result from the experiments from 



testing data of selected benchmarks. Results show percentage 
of the correctly classified, incorrectly classified and “not 
classified” patterns.  

The results show that proposed method achieve higher 
classification accuracy than MF ARTMAP with every used 
benchmark data set. We suppose that higher classification 
accuracy is caused by the ability of CFCMC creating much 
more complex decision surface and thus, it has a better 
adaptability and flexibility. Another improvement can be seen 
in the ratio of patterns, which were “not classified”. This ratio 
is significantly lower in the CFCMC. This result is evidence of 
the better generalization ability of CFCMC. 

TABLE I.  COMPARISON OF CLASSIFICATION ACCURACY MF ARTMAP AND 
CFCMC 

Dataset   MF ARTMAP CFCMC 

IRIS 

correct 98% 99% 

incorrect 2% 1% 

not classified 0% 0% 

BUPA 

correct 52% 64% 

incorrect 32% 32% 

not classified 16% 4% 

PIMA 

correct 60% 72% 

incorrect 11% 27% 

not classified 29% 1% 

CANCER 

correct 36% 94% 

incorrect 2% 5% 

not classified 62% 1% 

WINE 

correct 44% 82% 

incorrect 8% 18% 

not classified 48% 0% 

 

VI. DESCRIPTION OF IDENTIFIED ISSUES AND SOLUTIONS 

In this section, we discuss some issues and their theoretical 
solutions and a possible usage of the proposed method.  

A. Loss of the surface flexibility 

The proposed method is based on the fact that every fuzzy 
class membership criterion κ of the ݅-th class has the same set 
of parameters (values of parameters E and F). This fact can lead 
to loss of complexity, thus flexibility of the decision surface 
during optimization procedure. The problem is explained by 
one dimensional data with five training points shown as a red 
triangles, one test point shown as a green square and one 
validation point shown as a blue circle in Fig. 7. The decision 
surface for a given data before optimization procedure is shown 
in Fig. 7 also.  

 
Fig. 7 Decision surface created by CFCMC for a given data before optimization 

It can be seen that the criterion membership value of the 
validation pattern is significantly lower than the value of any 
training pattern. Therefore, validation pattern will be not 
classified to any class. Based on the cost function of the 
optimization algorithm, the goal is to increase the criterion 
membership value of validation point to prevent to be “not 
classified”. The final shape of decision surface after 
optimization of the CFCMC with the same parameters for every 
fuzzy class membership criterion  κ  is shown in Fig. 8. 
Although, the validation pattern can be classified to known 
class because of a sufficient value of the criterion membership, 
it is evident that the shape of decision surface loses its 
complexity because of its smooth shape, thus it loses its 
flexibility and adaptability. 

 

Fig. 8 Decision surface for a given data created by CFCMC with the same set 
of parameters for each fuzzy class membership criterion of the same class after 
optimization 

One of the possible theoretical solutions is to increase the 
number of parameters. In contrast with current setting, it means 
that every fuzzy class membership criterion κwould have own 
sets of parameters. This setting allows to create even more 
complex decision surface, but for the price of creating a much 
larger vector of parameters to optimize, which may be difficult 
task for every optimization algorithm. Therefore, it is necessary 
to develop a more sophisticated method to find optimal 
parameters. To show the possibilities of own sets of parameters 
for every  κ, we used the same data set as in Fig. 7. To increase 
the criterion membership value of validation point we changed 
the parameters of the κ defined by the closest training pattern 
to the validation point only (training pattern with value of ݔ =
5). Final shape of the decision surface is visualized in Fig. 9. It 
can be seen that the criterion membership value of validation 
pattern increased to a sufficient level without losing of shape 
complexity of decision surface in contrast with the case 
illustrated in Fig. 8. This issue is an open challenge for further 
improvement of the proposed approach as well as the next 
described issue. 



 
Fig. 9 Decision surface for a given data created by CFCMC with different set 
of parameters for each fuzzy class membership criterion of the same class after 
changing parameters of one κ only 

B. Absence of an incremental learning  

The best advantage of MF ARTMAP is incremental 
learning ability due to the self-organization nature of the 
network structure. This ability means that if we have a 
classifier, which is able to classify data to, e.g. three classes, 
and we want to retrain this classifier for additional fourth class, 
we will not have to modify knowledge about previous three 
classes. Unfortunately, our proposed method is not capable of 
incremental learning. A possible solution would be to create set 
of experts, where each expert is expert to one specific class. If 
new class came to the training set, the new expert would be 
added, and only his knowledge would be modified.  

C. Semantic information extraction 

Knowledge of the shape of decision surface over feature 
space is a base for high-level processing, giving auxiliary 
output about data structures or similarities and dissimilarities 
between classes. The post-processing can offer information 
about one particular class (Intra-class knowledge), which 
usually express a homogeneity of the class. Contrariwise, the 
relation between several classes (Inter-class knowledge) 
extracts relation between classes using a computation of 
coverage between decision surfaces of classes [17].   

VII. CONCLUSION AND FUTURE WORK 

In this paper, we provide an introduction to classification 
algorithm as one of the principles of pattern recognition. We 
examined the various type of classifier with a focus on their 
effect on the feature space and compared the type and the shape 
of separating and decision surface, respectively. We have 
proposed a novel classification approach based on Cumulative 
Fuzzy Membership Function that creates a decision surface in 
a different way as an MF ARTMAP neural network. We called 
the proposed decision surface Cumulative Fuzzy Class 
Membership Criterion (CFCMC). We compared these two 
classification approaches. The analysis showed that CFCMC is 
more adaptable and flexible in forming a decision boundary 
than MF ARTMAP. After that we create the classifier built 
based on CFCMC that employ a well-known optimizing 
algorithm, Simulated Annealing, for optimizing the parameters 
of CFCMC. As experiments show, this approach provides us 
better classification accuracy than the MF ARTMAP.  

For the future work, we raised some issues and their 
possible solutions, such as cases of losing the flexibility of the 
CFCMC or absence of an incremental learning. Furthermore, 
we mentioned possible usage of the proposed method. In fact, a 

clear advantage of the CFCMC, as well as MF ARTMAP, is 
that they are not “black-boxes” in a strictly way because they 
create created a decision surfaces that can offer semantic 
information about one particular class as well as relations 
among classes. This challenge should be objective of the future 
research. 
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