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Abstract – This paper deals with an MF ARTMAP neural 

network. We study its behavior while training with different data 

sets and using different parameters. It gives us better knowledge 

of its strong and weak points. Subsequently, we focus on 

alleviation of weak points and improvement of strong points like 

the utilization of a one-shot learning, an incremental ability of the 

network without forgetting the already obtained knowledge or 

post-processing of information stored in the form of the 

transparent internal structure of identified clusters and 

classification classes. We have shown the incrementality of this 

neural network. As for the weak part of the MF ARTMAP 

algorithm, we try to increase the generalization ability by 

adopting Simulated Annealing method to find the best shape of 

membership functions with the best possible ratio between 

generalization of the neural network and its classification 

performance. Using simulated annealing algorithm, we optimize 

network’s parameters namely the membership function’s shapes 

of fuzzy clusters in the feature space. Subsequently, we compare 

classification accuracy of MF ARTMAP with and without 

parameters optimization, as well. Moreover, we compare against 

the classification precision of the Multi-Layer Perceptron (MLP) 

using benchmark data sets, with the aim to get a relevant image 

of the overall MF ARTMAP efficiency beside the well-known and 

frequently-used algorithm, like the MLP. 
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I.  INTRODUCTION 

 Since 1943, when Warren McCulloch and Walter Pitts 

presented their paper on how neurons might work [1], the era 

of artificial neural networks has started. This seminal paper 

has unleashed an avalanche of development in the field of 

artificial neural networks (ANNs). Since then, many kinds of 

neural networks with various topologies have been developed, 

each suitable for solving a particular task [2]. Nevertheless, 

almost all types of neural networks suffer from catastrophic 

forgetting [3] of previously learned findings when requested to 

acquire new knowledge or when the learning system should 

follow changing environment. 

Stephan Grossberg in [4] first formally described the 

problem and called it a stability-plasticity dilemma. In general, 

the stability-plasticity dilemma formulates requirements for 

learning systems. Each learning system should be stable in 

response to known inputs but also, should be plastic enough to 

recognize and learn new inputs. 

A possible solution to the plasticity-stability dilemma is 

the Adaptive Resonance Theory (ART) [5], initially 

introduced by  Grossberg and Carpenter. This theory embeds 

competitive and learning model into the self-organized 

structure [6]. Such self-organized structure can be a neural 

network, which can recognize and classify an arbitrary 

sequence of input samples in real time. The ART self-

organizes its topology and generates stable recognition codes 

during the learning process. 

Although the implementation of the ART theory was 

intended as a single neural network, with time, many 

modifications and improvements of the basic ART network, 

like ART 2 [7], ART 2-A [8], Fuzzy ART [9] were developed. 

Their common characteristic is that all of them are recurrent 

self-organized neural networks, trained in an unsupervised 

manner. On the other hand, ARTMAP is a subgroup of ART 

networks, which can be trained in a supervised manner. 

Studies in [6][10][11] and [12], characterize Membership 

Function (MF) ARTMAP, as a supervised recurrent neural 

network, which has qualities like incremental learning or 

transparent network structure that are rare for neural networks. 

Thanks to them, the MF ARTMAP seems to be a promising 

solution for the problem of catastrophic forgetting. Those 

papers highlight a possibility of one-shot learning and denote 

that MF ARTMAP is not a black box in the strict sense. It is 

related to the core functionality and knowledge representation 

of the MF ARTMAP, which clusters input samples in the 

feature space. Moreover, the internal structure of the network 

is constantly updated and reflects the structure of the data’s 

clusters in the feature space. Hence, we can extract interesting 

information about clusters and classification classes from the 

network structure in sematic expressions. The MF ARTMAP 

seems to be an interesting network, which can provide several 

valuable features. Unfortunately, there is no sufficient 

theoretical study of MF ARTMAP and its mathematical 

background is not sufficiently studied. Therefore, we decided 

to study the MF ARTMAP algorithm. 

In the second section, we describe the MF ARTMAP’s 

topology and the learning algorithm. In the next section, we 

provide an example of the incremental ability of the MF 

ARTMAP network in comparison with MLP. The fourth 

section is focused on the explanation of performed trials, 

identified issues, and their solutions. The fifth section unveils 



further potentials of the neural network towards to semantics 

extraction. Finally, we will conclude this work. 

II. MF ARTMAP TOPOLOGY AND LEARNING ALGORITHM 

As the name implies, MF ARTMAP belongs to the group 

of ARTMAP neural networks and poses a symbiosis of fuzzy 

sets theory and ART theory. The core functionality of this 

network is a clustering of input patterns in the feature space. 

Fuzzy clusters (sets)1 consist of clustered inputs in the feature 

space as illustrated in Fig.1. Fuzzy class consists of one or 

several fuzzy clusters which means that we can compute a 

value of membership µA(x) of each input sample x to each 

fuzzy cluster A. The maximum of those membership values 

represents the membership of the input to the associated class. 

Although it is possible to use arbitrary membership function, 

the Cauchy-like bell-shaped membership function is 

frequently used. 

We can define fuzzy cluster using a fuzzy relation with three 

parameters for each dimension of each cluster (k). Namely 

center (Xs,k), variance (Ek) and cluster’s kernel width (Fk). If 

the input vector is multidimensional, then mentioned 

parameters are defined as vectors, which elements are defined 

for an appropriate dimension of the cluster. MF ARTMAP 

learning algorithm adjusts parameters of the fuzzy relation 

which results in the modification of the membership 

function’s shape. The shapes of the membership functions are 

adapted so that they cover all objects in the feature space 

belonging to the class associated with each of them. 

 

(1) 

 

 

Equation (1) shows the membership value of the i-th, m-

dimensional input vector  to the k-th fuzzy cluster. Index j is 

a dimension index and dimensionality of fuzzy cluster is the 

same as dimensionality of the input vector. The function, fk,j 

represents the j-th dimensional membership of the k-th fuzzy 

cluster define as follows. 

 

 

(2) 

 

Wherein xi,j is a j-th dimension of the input vector,  is 

center of k-th fuzzy cluster and its j-th dimension. Ek,j and Fk,j 

are parameters of the k-th fuzzy cluster in the j-th dimension. 

[6] Ek,j is a variance of the j-th dimension of the k-th  fuzzy 

cluster. The increase of the Ek,j parameter causes the widening 

of the membership function in that dimension. Increasing of 

the Fk,j parameter is equivalent to increasing the steepness of 

the membership function. Fig. 1. presents the structure of the 

MF ARTMAP neural network. It consists of four neuron 

layers as follows:  

1. Input layer propagates an input pattern to the comparison 

layer, where it is possible to perform normalization or 

                                                           
1 In this paper, we consider a fuzzy class or cluster and fuzzy set as 

equivalent terms. 

standardization of the inputs. The number of neurons in the 

input layer is the same as the dimensionality of the input 

vector. 
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Fig. 1 A topology of the MF ARTMAP network 

 
2. Comparison layer computes a partial membership function 

for each dimension of each known fuzzy cluster according 
to equation (2). The neurons in this layer are aligned in two-
dimensional grid, in which columns represent the fuzzy 
clusters while rows represent cluster’s dimensions.  

3. Recognition layer summarizes partial membership values 

to the total value of membership function of each fuzzy 

cluster according to (1). Each neuron in this layer 

represents one fuzzy cluster. Once the learning algorithm 

computes the total membership value, this value is 

compared with a threshold value set by the user. If the total 

membership value exceeds the threshold, then the input 

vector is considered to be similar enough to the currently 

investigated fuzzy cluster, and this cluster is suitable for 

next processing in the Mapfield layer. Otherwise, the 

investigated fuzzy cluster does not describe the input 

correctly, and the signal from this neuron is not propagated 

to the next layer. 

If no cluster is assigned to the input, then the learning 

algorithm modifies the network’s structure by adding a 

new neuron to the recognition layer and new row of 

neurons to the comparison layer, which is equivalent to a 

definition of a new fuzzy cluster which is centered in the 

input sample. 

4. Mapfield contains the same number of neurons as the 

number of classes. Since each class consists of unification 

of fuzzy clusters, the membership value of the fuzzy class 

is equal to the maximum membership value of its fuzzy 

clusters. The output from the MF ARTMAP network can 

be in the form of a vector, which consists of membership 

values of the input pattern to the respective fuzzy class. 

The second possibility and usually more common output is 

the name of the fuzzy class with the maximum value of 

membership function. If the output class does not 

correspond to the desired output of the input pattern, the 

algorithm adds a new fuzzy cluster according to the 

approach mentioned in point 3. Otherwise, the adaptation 



of the parameters ( , Ek and Fk) occurs. Since the 

recurrent synaptic connection between comparison and 

recognition layer encode those parameters, the adaptation 

procedure adjusts those links. 
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Wherein q is the number of all input patterns covered by 

the fuzzy cluster; O denotes the old value of the variable, N 

refers to the adjusted parameters, and X is an input sample. 

III. INCREMENTAL LEARNING OF THE MF ARTMAP 

From the nature of the ART-like networks follows that 

incremental learning ability without catastrophic forgetting. 

Although the incremental ability should be obvious due to the 

self-organization nature of the network structure, it is not well 

covered in the existing literatures. Hence, we dedicate this 

section to provide such experiments. We proposed simple 

trials, in which we trained MF ARTMAP and Multi-Layer 

Perceptron (MLP).We trained and evaluated both neural 

networks in two steps. For those purposes, we used IRIS data 

[13], which are often used as a benchmark for classification. 

IRIS data contains 150 input vectors that belong to three 

classes. We created two data sets. The first data set contained 

100 input patterns, which belong to two classes. We split this 

data set for training set (70 input patterns; 35 for class A and 

35 for class B) and testing set (30 input patterns; 15 for class 

A and 15 for class B). Then, we used the rest (50 vectors), 

which belong to the class C, for the second data set. We split 

this data set into training and testing sets, as well. The training 

set consisted of 35 inputs for class C. Test set contained 15 

patterns of class C and also all patterns from the first test set. 

So, the total number of instances in the second test set is 45 

(15 instances of class A, 15 for class B and 15 for class 

C).Here, we attempt to show that the MF ARTMAP can 

correctly classify all input patterns without forgetting the 

already gained knowledge. The experiment was executed as 

follows: 

1. Training MF ARTMAP and MLP with the 1st training set. 

2. Evaluating both networks using the 1st testing set and 

visualizing the results using contingency tables. 

3. Usage of the 2nd training set for the incremental training of 

the already trained MF ARTMAP and MLP neural 

networks. 

4. Re-evaluating both neural networks with the 2nd testing set 

and visualizing the results using contingency tables. 

 

We expected high classification accuracy for both 

networks after training by patterns from the 1st training set. 

However, in the case of MLP, the 2nd training causes the MLP 

network to be able to correctly classify only the class C. 

The generated confusion matrices (Table 1 and 2) agree 

with our hypothesis, and thus, we have demonstrated the 

incremental ability of the MF ARTMAP learning without 

forgetting the already gained knowledge. MF ARTMAP can 

be trained in incremental nature due to its self-organization 

capacity and establishment of new clusters. As can be seen 

from Tab. 1, the MF ARTMAP before incremental learning, 

had 23 clusters. During the incremental training, it gained new 

clusters and finally had 37 clusters. 

 
Table. 1 Contingency tables for MF ARTMAP after training by 

the 1st training set (left) and after incremental learning (right). 

 
 

 Table. 2 Contingency tables for MLP network after training by 

the 1st training set (left) and after incremental learning (right). 

 

IV. DESCRIPTION OF IDENTIFIED ISSUES AND SOLUTIONS 

In this section, we discuss MF ARTMAP from the empirical 

point of view. We observe on how the MF ARTMAP behaves 

in different situations, against various inputs and various 

settings.  

We have prepared several data sets, which we have used 

for a measurement of classification performance of the MF 

ARTMAP algorithm. Those data sets contain 2 or 3 

dimensional artificially generated data. Those data follow the 

Normal distribution for each cluster. Each dataset consists of 2 

– 4 clusters, belonging to 2 or 3 classes. We have simulated 

the different overlap between clusters in each data set, and we 

have used a different number of samples for each cluster and 

each class (200 – 2000 patterns/class). Since those datasets are 

easy to visualize, they are suitable for full understanding of 

MF ARTMAP procedure   and can help us to unveil situation 

in feature space easily. MF ARTMAP classification process 

accuracy assessment principles were used according [14].  

 

 
Fig. 2 Feature space examples of generated 2 and 3-dimensional data 

sets. 



Since equations (4) and (5) are the same, we focused on 

verification of this fact. It is necessary to prove the correctness 

of default formulas, which are responsible for adjusting 

parameters of found clusters. We need to emphasize that 

parameters of fuzzy clusters are adjusted iteratively.  

During the verification of the mentioned formulas, we 

discovered that equation (4), which is responsible for an 

iterative computation (adjustment) of Ek parameter gives 

slightly different results, as we expected in comparison with 

the case when we did not compute the standard deviation 

iteratively. Nevertheless, the equation (4) is mathematically 

correct, we empirically found equation modification, which 

works exactly as we expected. Adjusted equations are as 

following: 

     (6) 
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  (8) 

 

Wherein q is the number of all input patterns covered by a 

fuzzy cluster; O means the old value of a variable, N is a new 

parameter value. 

Equations after modifications give the expected results in 

comparison with non-iterative computation. However, there is 

still the problem of computing F parameter. 

The experiments showed that situations in which the MF 

ARTMAP is unable to classify all patterns from the training 

test set, arise. This is due to the non-optimal value of F 

parameter. 

Figure 3 presents an influence of F parameter on the shape 

of the Cauchy-like membership function; wherein x-axis is an 

input value for one dimension and y-axis means the 

membership value. In the (a) part, the parameter F is set to 

values 1 or 2 for different clusters. It caused the value of 

membership belong to the interval from 0 to 1, and each 

cluster is relatively narrow. There exist sub-spaces in the 

feature space, where all clusters have their membership values 

equal to zero. Training patterns do not cover those places, and 

so the algorithm could not create a cluster there. If the test 

pattern belongs to this subspace, then the algorithm will be 

unable to classify it; the output is unknown class.  

For example, in Fig. 3 (a), the interval from -3 to -1 is the 

typical of an uncovered area. In selected case, it is better to 

have a large training set, with patterns which can cover the 

entire feature space by many narrow, distinct clusters. Then, 

we can reach a high classification precision and alleviate a 

problem of overlapping clusters, but in the test set are many 

patterns that the algorithm does not know to classify. 

We set the F values in Fig. 3 (b) to 0.2 or 0.1. Such setting 

causes that membership values not to cover the entire interval 

[0;1]. It causes that clusters are wide with very slight drop of 

the membership value. Using mentioned settings, we can 

cover the entire feature space, but usually at the cost of the 

classification precision. For instance an input pattern, whose 

value is -3 should be classified to the red cluster because its 

center is the closest to the pattern of entry. However, this 

pattern will be classified into the green cluster because there is 

the greatest membership value. In this case, we do not need 

many training patterns to cover the entire feature space. Not 

every training example is classified correctly, as well. The 

algorithm can classify all testing patterns, but mostly into the 

wrong class. The clusters overlapping problem occurs, as well. 

 

 
Fig. 3 F parameter influence on the shape of the Cauchy-like 

membership function. 

 

We need to find a balance between those scenarios with 

the goal to combine high classification precision of the first 

case with a generalization ability of the second case. 

Therefore, we decided to employ an optimization algorithm in 

order to optimize fuzzy cluster parameters. Our goal is to find 

an optimal value of the F parameter of each fuzzy cluster and 

each dimension. It is possible to use any optimization 

algorithm, for instance, evolutionary or genetic algorithms, 

hill climbing methods or gradient methods, we decided to 

employ a well-known simulated annealing [15] because of its 

simplicity and implementation clarity. 

Simulated annealing is suitable for utilization in wide 

range of optimization problems; the only requirement is a 

definition of a cost function. We defined cost function  as the 

classification accuracy, which we computed as a Kappa 

coefficient [16][17] from the contingency table. It means, that 

each time, when the clusters parameters were changed we 

evaluate the classification performance using the test set, 

create confusion matrix and compute Kappa coefficient. 

In the table 3, we summarized the average classification 

precision of MF ARTMAP without simulated annealing 

optimization, with optimization and comparison with MLP 

against some benchmark test data [13].  

Data set 
MF 

Artmap 
MF Artmap with  

optimization 
MLP 

IRIS 90% 100% 97% 

THYROID 85% 86% 98% 

FERTILITY 75% 91% 95% 

WINE 83% 90% 97% 

PIMA 60% 81% 63% 

BUPA 61% 72% 68% 

ECOLY 65% 80% 84% 

BREAST CANCER 92% 97% 98% 
Table 3. Comparison of classification precision between MF 

ARTMAP without and with optimization and with MLP. The best 

result for each data set is bold italic. 
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All values in the table 3. are averaged since the 

classification precision of the MF ARTMAP is dependent on 

the order of training samples. Thus, we trained MF ARTMAP 

at least ten times and computed the average precision. As the 

results show, the optimization of clusters parameters using the 

simulated annealing in the MF ARTMAP network increases 

classification accuracy. Another effect of the optimization is 

that the number of failed classifications (into the Unknown 

class) dramatically decreased. As an example we provide 

contingency tables for THYROID dataset (A,B,C classes), 

when the MF ARTMAP was trained without optimization and 

with simulated annealing optimization.  

 
Table. 4 Contingency tables for MF ARTMAP trained by 

THYROID data without optimization 

 
 

Table. 5 Contingency tables for MF ARTMAP trained by 

THYROID data with simulated annealing optimization 

 
 

Moreover, the comparison with the MLP showed that the 

MF ARTMAP with optimization has similar performance with 

that of MLP. However, the MF ARTMAP has clear advantage 

if we consider that MF ARTMAP allows incremental learning 

without catastrophic forgetting. 

Despite the issues described in the previous section, our 

experiments uncovered various benefits and further potential 

of this algorithm. The most valuable are a possibility of one-

shot incremental learning and output in the form of transparent 

information concerning to relations between the observed 

point in the feature space and all known classes. One-shot 

learning means that the learning process is not iterative. In 

other words, MF ARTMAP neural network can gain 

appropriate knowledge in one step. 

Furthermore, unlike other neural networks, the MF 

ARTMAP is not a black box in the strict sense. Since the 

algorithm can compute the membership value of the input to 

each class, the information about the clusters, their centers, 

and shapes of their membership functions must be stored in 

the network. This information can be utilized for post-

processing as follows. 

A. Generalization and number of clusters in the feature space 

If the number of clusters is large, the classification error 

can be low, but processing of the network can be very slow 

because the algorithm has to investigate a large number of 

clusters. Contrariwise, if the categorization error increases, the 

reason for this can be a lower number of clusters. [6] The aim 

of manipulation with the number of clusters is to find an 

optimal number of clusters. It is possible to do in two ways: 

1) Merging clusters 

Merging decreases the total number of clusters. Once, the 

learning is terminated, we can post-process information about 

the clusters. The post-processing searches clusters belonging 

to the same class, and if they are close they can be merged. 

This way, we can decrease the number of all clusters and 

speed up the MF ARTMAP. In this case we need to compute a 

center of a new cluster and new E and F parameters, which 

can hold all patterns of the original two clusters as selected in 

Fig. 4 (a). In the picture x is a dimension of the input and y is a 

membership value.  

2) Learning in several cycles 

Figure 4 shows that not whole feature space is covered by 

clusters. This phenomenon is possible to eliminate by learning 

in several cycles. Whereas the MF ARTMAP adopts the 

incremental algorithm, the algorithm has a capability to 

creating new clusters in the feature space. Therefore, we can 

train it several times, each time by the same train set, but with 

different order of the training patterns. This approach allows 

us to fill valleys between clusters, at the cost of the one-shot 

learning. 

 

 

 

 

 
Fig. 4 Examples of merging clusters (a) and learning in several 

cycles (b) [6]. 

B. Extraction information about clusters and classes 

The structure of clusters in the feature space and also 

classes distribution for each cluster are known. It is a base for 

high-level processing, giving auxiliary output about the 

clusters, classes, their structures or similarities and 

dissimilarities between classes.  The post-processing can offer 

information about one particular class (Intra-class knowledge) 

as well as the relation between several classes (Inter-class 

knowledge). Intra-class knowledge usually expresses a 

dispersion of clusters, which belong to one class in the feature 

space. Contrariwise, Inter-class knowledge extracts relation 

between clusters by using a computation of coverage between 

clusters. A suitable method for computing coverage is a 

Jeffries-Matsushita distance. This way, it is possible to obtain 

information about class independence and similarity. The 

difference between them is that class independence 

investigates independence of one class from all others classes 

while class similarity examines every time the similarity 

between two classes. 

C. Interpretation of multivalue outputs as results of 

classification process  

The MF ARTMAP computes the membership values of 

the input to each fuzzy class and fuzzy class is union of fuzzy 

clusters. This information can be considered as a multivalued 

x 



output and can be used for the improvement of classification. 

Classification accuracy is assessed with contingency table. 

Since each fuzzy class in the MF ARTMAP consists of 

unified fuzzy clusters, we can compute the membership value 

to each fuzzy cluster. It allows us for generating a contingency 

table for each cluster. Subsequently, by using the contingency 

tables we can make a statement about a confidence of the 

output. Table 6. shows two contingency tables. Each of them 

was generated for different clusters, and each of those two 

clusters classifies the same class. The cluster associates with 

the class “0” and depicted by contingency table (a) have 

classified correctly for every input. Therefore, if we can state 

that the output from this cluster is a class “0” can claim that 

“Classified Class 0 is for sure class 0.” On the other hand, the 

cluster associated with class “0” (contingency table (b)) has 

implicated correct class 8 times and 2 times an incorrect class. 

Therefore, based on the contingency table (b) we can state that 

the output is a class “0” more likely than class “1”, but for 

sure, it is an NOT class “2.” Such statements in the human-

friendly form may support a decision making. 

 

 
Tab 6. Examples of contingency tables for two different clusters 

V. CONCLUSION 

The main goal of this study is to provide scientific 

evidence behind the claimed characteristics of MF ARTMAP 

neural network and improve the accuracy assessment the 

network. We empirically showed that MF ARTMAP could be 

trained in incremental nature due to its self-organization 

capacity and establishment of new clusters. 

Further results of this paper are to improve generalization 

and also to improve accuracy as well, which was achieved by 

a Simulated Annealing approach and resulted in obtaining the 

best ratio between network generalization and classification 

precision by optimization parameters of the fuzzy clusters. 

Performed experiments showed that parameters 

optimization dramatically increases the classification accuracy 

of the MF ARTMAP network. In comparison with the MLP, 

we can conclude, that MF ARTMAP's classification is still 

slightly worse, but its incremental learning capability may 

outperform many others neural networks, including MLP. 

Furthermore we have argued about the potential of the MF 

ARTMAP algorithm towards to processing information about 

classified classes and their structure in the feature space in the 

intra-class and inter-class manner. 

Since the MF ARTMAP is incremental algorithm with 

good learning plasticity, we see a potential in deployment in 

the cloud environment, where we can benefit from 

crowdsourced collective learning, sharing gained knowledge 

between masses persons and devices and at last but not least 

development of multi-agent systems. The realization of cloud-

based MF ARTMAP is our immediate future target. 
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